22 resultados para 3D feature extraction
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
This paper proposes max separation clustering (MSC), a new non-hierarchical clustering method used for feature extraction from optical emission spectroscopy (OES) data for plasma etch process control applications. OES data is high dimensional and inherently highly redundant with the result that it is difficult if not impossible to recognize useful features and key variables by direct visualization. MSC is developed for clustering variables with distinctive patterns and providing effective pattern representation by a small number of representative variables. The relationship between signal-to-noise ratio (SNR) and clustering performance is highlighted, leading to a requirement that low SNR signals be removed before applying MSC. Experimental results on industrial OES data show that MSC with low SNR signal removal produces effective summarization of the dominant patterns in the data.
Resumo:
Many modeling problems require to estimate a scalar output from one or more time series. Such problems are usually tackled by extracting a fixed number of features from the time series (like their statistical moments), with a consequent loss in information that leads to suboptimal predictive models. Moreover, feature extraction techniques usually make assumptions that are not met by real world settings (e.g. uniformly sampled time series of constant length), and fail to deliver a thorough methodology to deal with noisy data. In this paper a methodology based on functional learning is proposed to overcome the aforementioned problems; the proposed Supervised Aggregative Feature Extraction (SAFE) approach allows to derive continuous, smooth estimates of time series data (yielding aggregate local information), while simultaneously estimating a continuous shape function yielding optimal predictions. The SAFE paradigm enjoys several properties like closed form solution, incorporation of first and second order derivative information into the regressor matrix, interpretability of the generated functional predictor and the possibility to exploit Reproducing Kernel Hilbert Spaces setting to yield nonlinear predictive models. Simulation studies are provided to highlight the strengths of the new methodology w.r.t. standard unsupervised feature selection approaches. © 2012 IEEE.
Resumo:
In many applications, and especially those where batch processes are involved, a target scalar output of interest is often dependent on one or more time series of data. With the exponential growth in data logging in modern industries such time series are increasingly available for statistical modeling in soft sensing applications. In order to exploit time series data for predictive modelling, it is necessary to summarise the information they contain as a set of features to use as model regressors. Typically this is done in an unsupervised fashion using simple techniques such as computing statistical moments, principal components or wavelet decompositions, often leading to significant information loss and hence suboptimal predictive models. In this paper, a functional learning paradigm is exploited in a supervised fashion to derive continuous, smooth estimates of time series data (yielding aggregated local information), while simultaneously estimating a continuous shape function yielding optimal predictions. The proposed Supervised Aggregative Feature Extraction (SAFE) methodology can be extended to support nonlinear predictive models by embedding the functional learning framework in a Reproducing Kernel Hilbert Spaces setting. SAFE has a number of attractive features including closed form solution and the ability to explicitly incorporate first and second order derivative information. Using simulation studies and a practical semiconductor manufacturing case study we highlight the strengths of the new methodology with respect to standard unsupervised feature extraction approaches.
Resumo:
The use of image processing techniques to assess the performance of airport landing lighting using images of it collected from an aircraft-mounted camera is documented. In order to assess the performance of the lighting, it is necessary to uniquely identify each luminaire within an image and then track the luminaires through the entire sequence and store the relevant information for each luminaire, that is, the total number of pixels that each luminaire covers and the total grey level of these pixels. This pixel grey level can then be used for performance assessment. The authors propose a robust model-based (MB) featurematching technique by which the performance is assessed. The development of this matching technique is the key to the automated performance assessment of airport lighting. The MB matching technique utilises projective geometry in addition to accurate template of the 3D model of a landing-lighting system. The template is projected onto the image data and an optimum match found, using nonlinear least-squares optimisation. The MB matching software is compared with standard feature extraction and tracking techniques known within the community, these being the Kanade–Lucus–Tomasi (KLT) and scaleinvariant feature transform (SIFT) techniques. The new MB matching technique compares favourably with the SIFT and KLT feature-tracking alternatives. As such, it provides a solid foundation to achieve the central aim of this research which is to automatically assess the performance of airport lighting.
Resumo:
This paper introduces a new technique for palmprint recognition based on Fisher Linear Discriminant Analysis (FLDA) and Gabor filter bank. This method involves convolving a palmprint image with a bank of Gabor filters at different scales and rotations for robust palmprint features extraction. Once these features are extracted, FLDA is applied for dimensionality reduction and class separability. Since the palmprint features are derived from the principal lines, wrinkles and texture along the palm area. One should carefully consider this fact when selecting the appropriate palm region for the feature extraction process in order to enhance recognition accuracy. To address this problem, an improved region of interest (ROI) extraction algorithm is introduced. This algorithm allows for an efficient extraction of the whole palm area by ignoring all the undesirable parts, such as the fingers and background. Experiments have shown that the proposed method yields attractive performances as evidenced by an Equal Error Rate (EER) of 0.03%.
Resumo:
The imaging properties of a phase conjugating lens operating in the far field zone of the imaged source and augmented with scatterers positioned in the source near field region are theoretically studied in this paper. The phase conjugating lens consists of a double sided 2D assembly of straight wire elements, individually interconnected through phase conjugation operators. The scattering elements are straight wire segments which are loaded with lumped impedance loads at their centers. We analytically and numerically analyze all stages of the imaging process; i) evanescent-to-propagating spectrum conversion; ii) focusing properties of infinite or finite sized phase conjugating lens; iii) source reconstruction upon propagating-to-evanescent spectrum conversion. We show that the resolution that can be achieved depends critically on the separation distance between the imaged source and scattering arrangement, as well as on the topology of the scatterers used. Imaged focal widths of up to one-seventh wavelength are demonstrated. The results obtained indicate the possibility of such an arrangement as a potential practical means for realising using conventional materials devices for fine feature extraction by electromagnetic lensing at distances remotely located from the source objects under investigation
Resumo:
The concentration of organic acids in anaerobic digesters is one of the most critical parameters for monitoring and advanced control of anaerobic digestion processes. Thus, a reliable online-measurement system is absolutely necessary. A novel approach to obtaining these measurements indirectly and online using UV/vis spectroscopic probes, in conjunction with powerful pattern recognition methods, is presented in this paper. An UV/vis spectroscopic probe from S::CAN is used in combination with a custom-built dilution system to monitor the absorption of fully fermented sludge at a spectrum from 200 to 750 nm. Advanced pattern recognition methods are then used to map the non-linear relationship between measured absorption spectra to laboratory measurements of organic acid concentrations. Linear discriminant analysis, generalized discriminant analysis (GerDA), support vector machines (SVM), relevance vector machines, random forest and neural networks are investigated for this purpose and their performance compared. To validate the approach, online measurements have been taken at a full-scale 1.3-MW industrial biogas plant. Results show that whereas some of the methods considered do not yield satisfactory results, accurate prediction of organic acid concentration ranges can be obtained with both GerDA and SVM-based classifiers, with classification rates in excess of 87% achieved on test data.
Resumo:
Recent renewed interest in computational writer identification has resulted in an increased number of publications. In relation to historical musicology its application has so far been limited. One of the obstacles seems to be that the clarity of the images from the scans available for computational analysis is often not sufficient. In this paper, the use of the Hinge feature is proposed to avoid segmentation and staff-line removal for effective feature extraction from low quality scans. The use of an auto encoder in Hinge feature space is suggested as an alternative to staff-line removal by image processing, and their performance is compared. The result of the experiment shows an accuracy of 87 % for the dataset containing 84 writers’ samples, and superiority of our segmentation and staff-line removal free approach. Practical analysis on Bach’s autograph manuscript of the Well-Tempered Clavier II (Additional MS. 35021 in the British Library, London) is also presented and the extensive applicability of our approach is demonstrated.
Resumo:
This paper presents a new approach to speech enhancement from single-channel measurements involving both noise and channel distortion (i.e., convolutional noise), and demonstrates its applications for robust speech recognition and for improving noisy speech quality. The approach is based on finding longest matching segments (LMS) from a corpus of clean, wideband speech. The approach adds three novel developments to our previous LMS research. First, we address the problem of channel distortion as well as additive noise. Second, we present an improved method for modeling noise for speech estimation. Third, we present an iterative algorithm which updates the noise and channel estimates of the corpus data model. In experiments using speech recognition as a test with the Aurora 4 database, the use of our enhancement approach as a preprocessor for feature extraction significantly improved the performance of a baseline recognition system. In another comparison against conventional enhancement algorithms, both the PESQ and the segmental SNR ratings of the LMS algorithm were superior to the other methods for noisy speech enhancement.
Resumo:
This paper presents a new approach to single-channel speech enhancement involving both noise and channel distortion (i.e., convolutional noise). The approach is based on finding longest matching segments (LMS) from a corpus of clean, wideband speech. The approach adds three novel developments to our previous LMS research. First, we address the problem of channel distortion as well as additive noise. Second, we present an improved method for modeling noise. Third, we present an iterative algorithm for improved speech estimates. In experiments using speech recognition as a test with the Aurora 4 database, the use of our enhancement approach as a preprocessor for feature extraction significantly improved the performance of a baseline recognition system. In another comparison against conventional enhancement algorithms, both the PESQ and the segmental SNR ratings of the LMS algorithm were superior to the other methods for noisy speech enhancement. Index Terms: corpus-based speech model, longest matching segment, speech enhancement, speech recognition