139 resultados para resurrection plant
Resumo:
In the areas adjacent to the drowned Pleistocene continent of Sunda – present-day Mainland and Island SE Asia – the Austronesian Hypothesis of a diaspora of rice cultivators from Taiwan ∼4200 years ago has often been linked with the start of farming. Mounting evidence suggests that these developments should not be conflated and that alternative explanations should be considered, including indigenous inception of complex patterns of plant food production and early exchange of plants, animals, technology and genes. We review evidence for widespread forest disturbance in the Early Holocene which may accompany the beginnings of complex food-production. Although often insubstantial, evidence for incipient and developing management of rainforest vegetation and of developing complex relationships with plants is present, and early enough to suggest that during the Early to mid-Holocene this vast region was marked by different approaches to plant food production. The trajectory of the increasingly complex relationships between people and their food organisms was strongly locally contingent and in many cases did not result in the development of agricultural systems that were recognisable as such at the time of early European encounters. Diverse resource management economies in the Sunda and neighbouring regions appear to have accompanied rather than replaced a reliance on hunting and gathering. This, together with evidence for Early Holocene interaction between these neighbours, gives cause for us to question some authors continued adherence to a singular narrative of the Austronesian Hypothesis and the ‘Neolithisation’ of this part of the world. It also leads us to suggest that the forests of this vast region are, to an extent, a cultural artefact.
Ecological dynamics of extinct species in empty habitat networks. 2. The role of host plant dynamics
Resumo:
This paper explores the relative effects of host plant dynamics and butterfly-related parameters on butterfly persistence. It considers an empty habitat network where a rare butterfly (Cupido minimus) became extinct in 1939 in part of its historical range in north Wales, UK. Surviving populations of the butterfly in southern Britain were visited to assess use of its host plant (Anthyllis vulneraria) in order to calibrate habitat suitability and carrying capacity in the empty network in north Wales. These data were used to deduce that only a portion ( similar to 19%) of the host plant network from north Wales was likely to be highly suitable for oviposition. Nonetheless, roughly 65,460 eggs (3273 adult equivalents) could be expected to be laid in north Wales, were the empty network to be populated at the same levels as observed on comparable plants in surviving populations elsewhere. Simulated metapopulations of C. minimus in the empty network revealed that time to extinction and patch occupancy were significantly influenced by carrying capacity, butterfly mean dispersal distance and environmental stochasticity, although for most reasonable parameter values, the model system persisted. Simulation outputs differed greatly when host plant dynamics was incorporated into the modelled butterfly dynamics. Cupido minimus usually went extinct when host plant were at low densities. In these simulations host plant dynamics appeared to be the most important determinant of the butterfly's regional extirpation. Modelling the outcome of a reintroduction programme to C. minimus variation at high quality locations, revealed that 65% of systems survived at least 100 years. Given the current amount of resources of the north Wales landscape, the persistence of C. minimus under a realistic reintroduction programme has a good chance of being successful, if carried out in conjunction with a host plant management programme.
Resumo:
Metal and metalloid resistances in plant species and genotypes/accessions are becoming increasingly better understood at the molecular and physiological level. Much of the recent focus into metal resistances has been on hyperaccumulators as these are excellent systems to study resistances due to their very abnormal metal(loid) physiology and because of their biotechnological potential. Advances into the mechanistic basis of metal(loid) resistances have been made through the investigation of metal(loid) transporters, the construction of mutants with altered metal(loid) transport and metabolism, a better understanding of the genetic basis of resistance and hyperaccumulation and investigations into the role of metal(loid) ion chelators. This review highlights these recent advances. © Springer 2005.
Resumo:
Elevation of arsenic levels in soils causes considerable concern with respect to plant uptake and subsequent entry into wildlife and human food chains, Arsenic speciation in the environment is complex, existing in both inorganic and organic forms, with interconversion between species regulated by biotic and abiotic processes. To understand and manage the risks posed by soil arsenic it is essential to know how arsenic is taken up by the roots and metabolized within plants. Some plant species exhibit phenotypic variation in response to arsenic species, which helps us to understand the toxicity of arsenic and the way in which plants have evolved arsenic resistances. This knowledge, for example, could be used produce plant cultivars that are more arsenic resistant or that have reduced arsenic uptake. This review synthesizes current knowledge on arsenic uptake, metabolism and toxicity for arsenic resistant and nonresistant plants, including the recently discovered phenomenon of arsenic hyperaccumulation in certain fern species. The reasons why plants accumulate and metabolize arsenic are considered in an evolutionary context. © New Phytologist.
Resumo:
A microcosm system was developed to investigate transfers of organic xenobiotics in air-soil-plant systems. This was validated using 14C labelled 1,2-dichlorobenzene (DCB) as a model compound. Trapping efficiency was 106 ± 3% for volatile compounds and 93.0 ± 2.2% for carbon dioxide in a blank microcosm arrangement. Recovery of 1,2-dichlorobenzene spiked to grassed and unplanted soils was > 90% after 1 week. The predominant DCB loss process was volatilisation with no evidence for mineralisation over 1 week and 20-30% of the added spike remained in soil. Although there was no evidence for root uptake and translocation of added label, foliar uptake of soil volatilised compound was detected. The microcosm showed good potential for study of 14C labelled and unlabelled organic xenobiotic transfers in air-soil-plant systems with single plants and also intact planted cores.
Response of soil microbial biomass to 1,2-dichlorobenzene addition in the presence of plant residues
Resumo:
The impact of 1,2-dichlorobenzene on soil microbial biomass in the presence and absence of fresh plant residues (roots) was investigated by assaying total vital bacterial counts, vital fungel hyphal length, total culturable bacterial counts, and culturable fluorescent pseudomonads. Diversity of the fluorescent pseudomonads was investigated using fatty acid methyl ester (FAME) characterization in conjunction with metabolic profiling of the sampled culturable community (Biolog). Mineralization of [14C]1,2- dichlorobenzene was also assayed. Addition of fresh roots stimulated 1,2- dichlorobenzene mineralization by over 100%, with nearly 20% of the label mineralized in root-amended treatments by the termination of the experiment. Presence of roots also buffered any impacts of 1,2-dichlorobenzene on microbial numbers. In the absence of roots, 1,2-dichlorobenzene greatly stimulated total culturable bacteria and culturable pseudomonads in a concentration-dependent manner. 1,2-Dichlorobenzene, up to concentrations of 50 μg/g soil dry weight had little or no deleterious effects on microbial counts. The phenotypic diversity of the fluorescent pseudomonad population was unaffected by the treatments, even though fluorescent pseudomonad numbers were greatly stimulated by both roots and 1,2-dichlorobenzene. The presence of roots had no detectable impact on the bacterial community composition. No phenotypic shifts in the natural population were required to benefit from the presence of roots and 1,2-dichlorobenzene. The metabolic capacity of the culturable bacterial community was altered in the presence of roots but not in the presence of 1,2-dichlorobenzene. It is argued that the increased microbial biomass and shifts in metabolic capacity of the microbial biomass are responsible for enhanced degradation of 1,2-dichlorobenzene in the presence of decaying plant roots.
Resumo:
Uptake kinetics of arsenate were determined in arsenate tolerant and non-tolerant clones of the grass Deschampsia cespitosa under differing root phosphorus status to investigate the mechanism controlling the suppression of arsenate influx observed in tolerant clones. Influx was always lower in tolerants compared to non-tolerants. Short term influx of arsenate by the high affinity uptake system in both tolerant clones was relatively insensitive to root phosphorus status. This was in contrast to the literature where the regulation of the phosphate (arsenate) uptake system is normally much more responsive to plant phosphorus status. The low affinity uptake system in both tolerant and non-tolerant clones, unlike the high affinity uptake system, was more closely regulated by root phosphate status and was repressed to a much greater degree under increasing root phosphorus levels than the high affinity system. © 1994 Kluwer Academic Publishers.
Resumo:
Carbon distribution within perennial ryegrass was determined at different stages of plant development, by pulse-labelling laboratory and field-grown plants with 14C-CO2. During the early stages of growth (23-51 days), C distribution of laboratory grown plants was not markedly affected by plant age, with 12.4-24% of net assimilated label lost into the soil as root-soil respiration. The percentage of net assimilate translocated below ground was 20-28% during this stage of growth. At 65 days, the percentage of the label translocated below ground decreased to 8.1% of the net assimilate, with a subsequent decrease in root-soil respiration to 3.9%. The ability of the plant to fix the label (expressed in MBq g-1 oven dry total plant weight) decreased steadily as the plants aged. When the 30 day old plants were subjected to water stress (soil water potential -1.5 MPa) for 2 days before pulse-labelling, root-soil respiration of the pulse-label decreased compared with plants grown at field capacity. The distribution of a 14C pulse-label within perennial ryegrass grown under field conditions was found to be dependent on the age of the plants. For 4 week old plants, 67% of net assimilated label was translocated below ground, with 64.8% of this respired by the roots and soil. Less label was translocated below ground at subsequent pulse-labels from weeks 8 to 24. The proportion of label translocated below ground respired by the roots and soil also decreased. The investment of label in the plant shoots was found to be greater in field grown plants as compared to plants of the same age grown in a controlled, laboratory environment. © 1990.
Resumo:
Perennial ryegrass was subjected to a range of anaerobic treatments. The distribution of C within the plant was determined by pulse labelling the shoots with 14C-CO2. A 5 h anaerobic period before pulse labelling reduced by 2.5-10 times the 14C remaining in the plants and released into the soil. The distribution of the 14C within the plant was also affected by anaerobiosis. Short periods of anaerobiosis (5 or 10 h) led to increased root-soil 14C respiration (monitored for 7 days). A longer period of anaerobiosis (48 h) initially inhibited root-soil 14C respiration, but when aerobiosis was restored. 57% of the total 14C fixed by the plant was respired by the roots-soil during the following 7 days compared to 19% for the aerobic control. There was a two-thirds reduction in the percentage C retained by the plants stressed for the 48 h compared to the aerobic control. At harvest, all anaerobic treatments were associated with more 14C remaining in the soil as a proportion of the total 14C fixed by the plant compared to the aerobic control. © 1990.
Resumo:
Perennial rye-grass plants were pulse labelled with [14C]-CO2 over a range of temperatures (5-25°C). The fate of the label was determined within the plant and soil. The temperature at which plants were pulse labelled had a marked effect on the distribution of the label within the plant and soil system. Root-soil respiration increased from 5.7 to 24.15% when expressed as a percentage of net assimilated label. The percentage of label remaining in the plant root and in the soil was greater at 5 and 25°C, with a minimum for both these components at 15°C. At 15°C the percentage of net assimilated label that remained in the shoots was greater than at other temperatures, with this percentage decreasing at the lower and higher temperatures. © 1989.
Resumo:
Recent research has supported the view that the distributions of many pests and diseases have extended towards higher latitudes over the last 50 years. Probably driven by a combination of climate change and trade, this extension to the ranges of hundreds of plant pathogens may have serious implications not only for agriculture, horticulture and forestry, but also for turf production &maintenance. Here we review our data relating to the current status of three emerging pest and disease problems across North West Europe (rapid blight, Labyrinthula sp. , the root knot nematode, Meloidogyne minor and the pacific stem gall nematode, Anguina pacificae ) and discuss the factors which may be involved in their spread and increasing impact on the turf industry. With turf production and maintenance becoming an increasingly international business, we ask if biosecurity and the promotion of plant health in turf production fields and associated sport facilities should be a greater priority for the industry. We also examine if a lack of effective biosecurity measures in the materials supply chain has led to increased plant health problems.
Resumo:
The bacterial plant pathogen Pseudomonas syringae causes disease in a wide range of plants. The associated decrease in crop yields results in economic losses and threatens global food security. Competition exists between the plant immune system and the pathogen, the basic principles of which can be applied to animal infection pathways. P. syringae uses a type III secretion system (T3SS) to deliver virulence factors into the plant that promote survival of the bacterium. The P. syringae T3SS is a product of the hypersensitive response and pathogenicity (hrp) and hypersensitive response and conserved (hrc) gene cluster, which is strictly controlled by the codependent enhancer-binding proteins HrpR and HrpS. Through a combination of bacterial gene regulation and phenotypic studies, plant infection assays, and plant hormone quantifications, we now report that Chp8 (i) is embedded in the Hrp regulon and expressed in response to plant signals and HrpRS, (ii) is a functional diguanylate cyclase, (iii) decreases the expression of the major pathogen-associated molecular pattern (PAMP) flagellin and increases extracellular polysaccharides (EPS), and (iv) impacts the salicylic acid/jasmonic acid hormonal immune response and disease progression. We propose that Chp8 expression dampens PAMP-triggered immunity during early plant infection.
Resumo:
A method is described for the rapid extraction of pectic substances from alcohol insoluble solids (AIS) from material of plant origin, especially fruit. Samples of AIS can be prepared for galacturonic acid assay within 60 min using extraction with 0·5m HCl in a Fibertec-1 system (Tecator) for 30 min. The extraction conditions are carefully standardised and operator error is reduced by the elimination of transfer steps, particularly during filtration. The results obtained for plant-derived alcohol insoluble solids containing from 10% to 33% pectic substances were in close agreement with those obtained by enzymic hydrolysis using a commercially available enzyme preparation (Ultrazyme). The method will have application in the rapid, routine estimation of pectic substances in plant materials. © 1987.