154 resultados para Surfaces, Algebraic.
Resumo:
Intense, femtosecond laser interactions with blazed grating targets are studied through experiment and particle-in-cell (PIC) simulations. The high harmonic spectrum produced by the laser is angularly dispersed by the grating leading to near-monochromatic spectra emitted at different angles, each dominated by a single harmonic and its integer-multiples. The spectrum emitted in the direction of the third-harmonic diffraction order is measured to contain distinct peaks at the 9th and 12th harmonics which agree well with two-dimensional PIC simulations using the same grating geometry. This confirms that surface smoothing effects do not dominate the far-field distributions for surface features with sizes on the order of the grating grooves whilst also showing this to be a viable method of producing near-monochromatic, short-pulsed extreme-ultraviolet radiation.
Resumo:
Harmonic generation in the limit of ultrasteep density gradients is studied experimentally. Observations reveal that, while the efficient generation of high order harmonics from relativistic surfaces requires steep plasma density scale lengths (L-p/lambda <1), the absolute efficiency of the harmonics declines for the steepest plasma density scale length L-p -> 0, thus demonstrating that near-steplike density gradients can be achieved for interactions using high-contrast high-intensity laser pulses. Absolute photon yields are obtained using a calibrated detection system. The efficiency of harmonics reflected from the laser driven plasma surface via the relativistic oscillating mirror was estimated to be in the range of 10(-4)-10(-6) of the laser pulse energy for photon energies ranging from 20-40 eV, with the best results being obtained for an intermediate density scale length.
Resumo:
High-harmonic generation (HHG) by nonlinear interaction of intense laser pulses with gases or plasma surfaces is the most prominent way of creating highly coherent extreme ultraviolet (EUV/XUV) pulses. In the last years, several scientific applications have been found which require the measurement of the polarization of the harmonic radiation. We present a broadband XUV polarimeter based on multiple Fresnel reflections providing an extinction rate of 5-25 for 17-45 nm which is particularly suited for surface harmonics. The device has first been tested at a gas harmonic source providing linearly polarized XUV radiation. In a further experiment using HHG from plasma surfaces, the XUV polarimeter allowed a polarization measurement of high harmonic radiation from plasma surfaces for the first time which reveals a linear polarization state as predicted for our generation parameters. The generation and control of intense polarized XUV pulses-together with the availability of broadband polarizers in the XUV-open the way for a series of new experiments. For instance, dichroism in the XUV, elliptically polarized harmonics from aligned molecules, or the selection rules of relativistic surface harmonics can be studied with the broadband XUV polarimeter.
Resumo:
Death receptor activation triggers recruitment of FADD, which via its death effector domain (DED) engages the DEDs of procaspase 8 and its inhibitor FLIP to form death-inducing signalling complexes (DISCs). The DEDs of FADD, FLIP and procaspase 8 interact with one another using two binding surfaces defined by α1/α4 and α2/α5 helices, respectively. Here we report that FLIP has preferential affinity for the α1/α4 surface of FADD, whereas procaspase 8 has preferential affinity for FADD's α2/α5 surface. These relative affinities contribute to FLIP being recruited to the DISC at comparable levels to procaspase 8 despite lower cellular expression. Additional studies, including assessment of DISC stoichiometry and functional assays, suggest that following death receptor recruitment, the FADD DED preferentially engages FLIP using its α1/α4 surface and procaspase 8 using its α2/α5 surface; these tripartite intermediates then interact via the α1/α4 surface of FLIP DED1 and the α2/α5 surface of procaspase 8 DED2.
Resumo:
The initial growth mechanism of epitaxial BaTiO3 films is studied by combined application of atomic force microscopy, cross sectional high-resolution transmission electron microscopy, and x-ray diffraction. Epitaxial BaTiO3 thin films were grown by pulsed laser deposition on vicinal Nb-doped SrTiO3 (SrTiO3:Nb) (001) substrates with well-defined terraces. X-ray diffraction and cross sectional high-resolution transmission electron microscopy investigations revealed well-defined epitaxial films and a sharp interface between BaTiO3 films and SrTiO3:Nb substrates. The layer-then-island (Stranski-Krastanov mode) growth mechanism observed by analyzing the morphology of a sequence of films with increasing amount of deposited material has been confirmed by microstructure investigations. (C) 2002 American Institute of Physics.
Resumo:
Bdellovibrio bacteriovorus is a famously fast, flagellate predatory bacterium, preying upon Gram-negative bacteria in liquids; how it interacts with prey on surfaces such as in medical biofilms is unknown. Here we report that Bdellovibrio bacteria "scout" for prey bacteria on solid surfaces, using slow gliding motility that is present in flagellum-negative and pilus-negative strains.
Resumo:
Partial hydrogenation of acrolein, the simplest alpha, beta-unsaturated aldehyde, is not only a model system to understand the selectivity in heterogeneous catalysis, but also technologically an important reaction. In this work, the reaction on Pt(211) and Au(211) surfaces is thoroughly investigated using density functional theory calculations. The formation routes of three partial hydrogenation products, namely propenol, propanal and enol, on both metals are studied. It is found that the pathway to produce enol is kinetically favoured on Pt while on Au the route of forming propenol is preferred. Our calculations also show that the propanal formation follows an indirect pathway on Pt(211). An energy decomposition method to analyze the barrier is utilized to understand the selectivities at Pt(211) and Au(211), which reveals that the interaction energies between the reactants involved in the transition states play a key role in determining the selectivity difference.
Resumo:
Reduced TiO2 (110) surfaces usually have OH groups as a result of H2O dissociation at oxygen vacancy defects. Because of excess electrons due to OH adsorption, OH/TiO2. exhibit interesting properties favorable to further O-2 or H2O adsorption. Both O-2 and H2O can adsorb and easily diffuse on the OH/TiO2 surface; such behavior plays a significant role in photocatalysis, heterogeneous catalysis, electronic devices and sensors. Indeed, the processes of H2O dissociation, O-2 and H2O diffusion on Such TiO2 surfaces, in the presence of OH groups, are important issues in their own right. Herein, the most recent experimental and theoretical progresses in understanding the interactions between adsorbed OH groups and O-2, or H2O, over TiO2 (110) surfaces and their implications will be reviewed. (c) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The chemisorption of CO on metal surfaces is widely accepted as a model for understanding chemical bonding between molecules and solid surfaces, but is nevertheless still a controversial subject. Ab initio total energy calculations using density functional theory with gradient corrections for CO chemisorption on an extended Pd{110} slab yield good agreement with experimental adsorption energies. Examination of the spatial distribution of individual Bloch states demonstrates that the conventional model for CO chemisorption involving charge donation from CO 5 sigma states to metal states and back-donation from metal states into CO 2 pi states is too simplistic, but the computational results provide direct insight into the chemical bonding within the framework of orbital mixing (or hybridisation). The results provide a sound basis for understanding the bonding between molecules and metal surfaces.
Resumo:
Ab initio total energy calculations have been performed for CO chemisorption on Pd(110). Local density approximation (LDA) calculations yield chemisorption energies which are significantly higher than experimental values but inclusion of the generalised gradient approximation (GGA) gives better agreement. In general, sites with higher coordination of the adsorbate to surface atoms lead to a larger degree of overbinding with LDA, and give larger corrections with GGA. The reason is discussed using a first-order perturbation approximation. It is concluded that this may be a general failure of LDA for chemisorption energy calculations. This conclusion may be extended to many surface calculations, such as potential energy surfaces for diffusion.
Resumo:
We break down photoelectron diffraction intensities into four terms in analogy to optical holography and discuss the effect of each term on reconstructed images. The second term involving products of scattered waves SIGMA-SIGMA-O(i)O(j)*, is in this case not structure-less. Theoretical analysis and simulations demonstrate that this term may lead to spurious features in real space images in holographic transforms of medium energy electron diffraction patterns. If it is small enough the problem may be overcome by an iterative correction process.
Resumo:
High resolution synchrotron radiation core level photoemission measurements have been used to undertake a comparative study of the high temperature stability of ultrathin Al2O3 layers deposited by atomic layer deposition (ALD) on both sulphur passivated and native oxide covered InGaAs. The residual interfacial oxides between sulphur passivated InGaAs and the ultrathin Al2O3 layer can be substantially removed at high temperature (up to 700 °C) without impacting on the InGaAs stoichiometry while significant loss of indium was recorded at this temperature on the native oxide InGaAs surface.