129 resultados para Quantum Physics


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We undertake a thorough analysis of the thermodynamics of the trajectories followed by a quantum harmonic oscillator coupled to $N$ dissipative baths by using a new approach to large-deviation theory inspired by phase-space quantum optics. As an illustrative example, we study the archetypal case of a harmonic oscillator coupled to two thermal baths, allowing for a comparison with the analogous classical result. In the low-temperature limit, we find a significant quantum suppression in the rate of work exchanged between the system and each bath. We further show how the presented method is capable of giving analytical results even for the case of a driven harmonic oscillator. Based on that result, we analyse the laser cooling of the motion of a trapped ion or optomechanical system, illustrating how the emission statistics can be controllably altered by the driving force.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Optomechanics is currently believed to provide a promising route towards the achievement of genuine quantum effects at the large, massive-system scale. By using a recently proposed figure of merit that is well suited to address continuous-variable systems, in this paper we analyze the requirements needed for the state of a mechanical mode (embodied by an end-cavity cantilever or a membrane placed within an optical cavity) to be qualified as macroscopic. We show that, according to the phase space-based criterion that we have chosen for our quantitative analysis, the state achieved through strong single-photon radiation-pressure coupling to a quantized field of light and conditioned by measurements operated on the latter might be interpreted as macroscopically quantum. In general, though, genuine macroscopic quantum superpositions appear to be possible only under quite demanding experimental conditions

Relevância:

30.00% 30.00%

Publicador:

Resumo:


We demonstrate the ability to control the molecular dissociation rate using femtosecond pulses shaped with third-order dispersion (TOD). Explicitly, a significant 50% enhancement in the dissociation yield for the low lying vibrational levels (v ∼ 6) of an H+2 ion-beam target was measured as a function of TOD. The underlying mechanism responsible for this enhanced dissociation was theoretically identified as non-adiabatic alignment induced by the pre-pulses situated on the leading edge of pulses shaped with negative TOD. This control scheme is expected to work in other molecules as it does not rely on specific characteristics of our test-case H+2 molecule.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Catalytic oxidation reaction monitoring has been performed for the first time with a trace gas carbon dioxide analyser based on a continuous wave (cw), thermoelectrically cooled (TEC), distributed feedback (DFB) quantum cascade laser (QCL) operating at around 2307 cm-1. The reaction kinetics for carbon monoxide oxidation over a platinum catalyst supported on yttria-stabilised zirconia were followed by the QCL CO2 analyser and showed that it is a powerful new tool for measuring low reaction rates associated with low surface area model catalysts operating at atmospheric pressures. A detection limit was determined of 40 ppb (1 standard deviation) for a 0.1 s average and a residual absorption standard deviation of 1.9×10-4. © 2012 Springer-Verlag.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Irreversibility is one of the most intriguing concepts in physics. While microscopic physical laws are perfectly reversible, macroscopic average behavior has a preferred direction of time. According to the second law of thermodynamics, this arrow of time is associated with a positive mean entropy production. Using a nuclear magnetic resonance setup, we measure the nonequilibrium entropy produced in an isolated spin-1/2 system following fast quenches of an external magnetic field and experimentally demonstrate that it is equal to the entropic distance, expressed by the Kullback-Leibler divergence, between a microscopic process and its time-reverse. Our result addresses the concept of irreversibility from a microscopic quantum standpoint.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a general method to undertake a thorough analysis of the thermodynamics of the quantum jump trajectories followed by an arbitrary quantum harmonic network undergoing linear and bilinear dynamics. The approach is based on the phase-space representation of the state of a harmonic network. The large deviation function associated with this system encodes the full counting statistics of exchange and also allows one to deduce for fluctuation theorems obeyed by the dynamics. We illustrate the method showing the validity of a local fluctuation theorem about the exchange of excitations between a restricted part of the environment (i.e., a local bath) and a harmonic network coupled with different schemes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider an optomechanical quantum system composed of a single cavity mode interacting with N mechanical resonators. We propose a scheme for generating continuous-variable graph states of arbitrary size and shape, including the so-called cluster states for universal quantum computation. The main feature of this scheme is that, differently from previous approaches, the graph states are hosted in the mechanical degrees of freedom rather than in the radiative ones. Specifically, via a 2N-tone drive, we engineer a linear Hamiltonian which is instrumental to dissipatively drive the system to the desired target state. The robustness of this scheme is assessed against finite interaction times and mechanical noise, confirming it as a valuable approach towards quantum state engineering for continuous-variable computation in a solid-state platform.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We calculate and analyze Feshbach resonance spectra for ultracold Yb(1S0)+Yb(3P2) collisions as a function of an interatomic potential scaling factor λ and external magnetic field. We show that, at zero field, the resonances are distributed randomly in λ, but that signatures of quantum chaos emerge as a field is applied. The random zero-field distribution arises from superposition of structured spectra associated with individual total angular momenta. In addition, we show that the resonances with respect to magnetic field in the experimentally accessible range of 400 to 2000 G are chaotically distributed, with strong level repulsion that is characteristic of quantum chaos.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dynamics of linear and nonlinear ionic-scale electrostatic excitations propagating in a magnetized relativistic quantum plasma is studied. A quantum-hydrodynamic model is adopted and degenerate statistics for the electrons is taken into account. The dispersion properties of linear ion acoustic waves are examined in detail. A modified characteristic charge screening length and "sound speed" are introduced, for relativistic quantum plasmas. By employing the reductive perturbation technique, a Zakharov-Kuznetzov-type equation is derived. Using the small-k expansion method, the stability profile of weakly nonlinear slightly supersonic electrostatic pulses is also discussed. The effect of electron degeneracy on the basic characteristics of electrostatic excitations is investigated. The entire analysis is valid in a three-dimensional as well as in two-dimensional geometry. A brief discussion of possible applications in laboratory and space plasmas is included.