155 resultados para Heat denaturing


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The intricate spatial and energy distribution of magnetic fields, self-generated during high power laser irradiation (at Iλ2∼1013-1014W.cm-2.μm2) of a solid target, and of the heat-carrying electron currents, is studied in inertial confinement fusion (ICF) relevant conditions. This is done by comparing proton radiography measurements of the fields to an improved magnetohydrodynamic description that fully takes into account the nonlocality of the heat transport. We show that, in these conditions, magnetic fields are rapidly advected radially along the target surface and compressed over long time scales into the dense parts of the target. As a consequence, the electrons are weakly magnetized in most parts of the plasma flow, and we observe a reemergence of nonlocality which is a crucial effect for a correct description of the energetics of ICF experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heat sinks are widely used for cooling electronic devices and systems. Their thermal performance is usually determined by the material, shape, and size of the heat sink. With the assistance of computational fluid dynamics (CFD) and surrogate-based optimization, heat sinks can be designed and optimized to achieve a high level of performance. In this paper, the design and optimization of a plate-fin-type heat sink cooled by impingement jet is presented. The flow and thermal fields are simulated using the CFD simulation; the thermal resistance of the heat sink is then estimated. A Kriging surrogate model is developed to approximate the objective function (thermal resistance) as a function of design variables. Surrogate-based optimization is implemented by adaptively adding infill points based on an integrated strategy of the minimum value, the maximum mean square error approach, and the expected improvement approaches. The results show the influence of design variables on the thermal resistance and give the optimal heat sink with lowest thermal resistance for given jet impingement conditions. 

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a feasible experimental scheme to direct measure heat and work in cold atomic setups. The method is based on a recent proposal which shows that work is a positive operator valued measure (POVM). In the present contribution, we demonstrate that the interaction between the atoms and the light polarization of a probe laser allows us to implement such POVM. In this way the work done on or extracted from the atoms after a given process is encoded in the light quadrature that can be measured with a standard homodyne detection. The protocol allows one to verify fluctuation theorems and study properties of the non-unitary dynamics of a given thermodynamic process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A conjugate heat transfer (CHT) method was used to perform the aerothermal analysis of an internally cooled turbine vane, and was validated against experimental and empirical data.
Firstly, validation of the method with regard to internal cooling was done by reproducing heat transfer test data in a channel with pin fin heat augmenters, under steady constant wall temperature. The computed Nusselt numbers for the two tested configurations (full length circular pin fins attached to both walls and partial pin fins attached to one wall only) showed good agreement with the measurements. Sensitivity to mesh density was evaluated under this simplified case in order to establish mesh requirements for the analysis of the full component.
Secondly, the CHT method was applied onto a turbine vane test case from an actual engine. The predicted vane airfoil metal temperature was compared to the measured thermal paint data and the in-house empirical predictions. The CHT results agreed well with the thermal paint data and showed better prediction than the current empirical modeling approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An unsteady numerical investigation was performed to examine time dependent behaviors of the tip leakage flow structures and heat transfer on the rotor blade tip and casing in a single stage gas turbine engine. A transonic, high-pressure
turbine stage was modeled and simulated using a stage pressure ratio of 3.2. The rotor’s tip clearance was 1.2 mm in height (3% of the rotor span) and its speed was set at 9500 rpm. Periodic flow is observed for each vane passing period. Tip leakage flow as well as heat transfer data showed highly time dependent behaviors. A stator trailing edge shock appears as the turbine stage is operating at transonic conditions. The shock alters the flow condition in the rotor section, namely, the tip leakage flow structures and heat transfer rate distributions. The instantaneous Nusselt number distributions are compared to the time averaged and steady-state results. The same patterns in tip leakage flow
structures and heat transfer rate distributions were observed in both unsteady and steady simulations. However, the unsteady simulation captured the locally time-dependent high heat transfer phenomena caused by the unsteady interaction with the upstream vane trailing-edge shock and the passing wake.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Organic Rankine Cycle (ORC) is the most commonly used method for recovering energy from small sources of heat. The investigation of the ORC in supercritical condition is a new research area as it has a potential to generate high power and thermal efficiency in a waste heat recovery system. This paper presents a steady state ORC model in supercritical condition and its simulations with a real engine’s exhaust data. The key component of ORC, evaporator, is modelled using finite volume method, modelling of all other components of the waste heat recovery system such as pump, expander and condenser are also presented. The aim of this paper is to investigate the effects of mass flow rate and evaporator outlet temperature on the efficiency of the waste heat recovery process. Additionally, the necessity of maintaining an optimum evaporator outlet temperature is also investigated. Simulation results show that modification of mass flow rate is the key to changing the operating temperature at the evaporator outlet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the most critical gas turbine engine components, rotor blade tip and casing, are exposed to high thermal load. It becomes a significant design challenge to protect the turbine materials from this severe situation. As a result of geometric complexity and experimental limitations, Computational Fluid Dynamics (CFD) tools have been used to predict blade tip leakage flow aerodynamics and heat transfer at typical engine operating conditions. In this paper, the effect of turbine inlet temperature on the tip leakage flow structure and heat transfer has been studied numerically. Uniform low (LTIT: 444 K) and high (HTIT: 800 K) turbine inlet temperature have been considered. The results showed the higher turbine inlet temperature yields the higher velocity and temperature variations in the leakage flow aerodynamics and heat transfer. For a given turbine geometry and on-design operating conditions, the turbine power output can be increased by 1.48 times, when the turbine inlet temperature increases 1.80 times. Whereas the averaged heat fluxes on the casing and the blade tip become 2.71 and 2.82 times larger, respectively. Therefore, about 2.8 times larger cooling capacity is required to keep the same turbine material temperature. Furthermore, the maximum heat flux on the blade tip of high turbine inlet temperature case reaches up to 3.348 times larger than that of LTIT case. The effect of the interaction of stator and rotor on heat transfer features is also explored using unsteady simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Evidence-based thermal care recommendations designed to minimize heat loss immediately at birth are readily available however, hypothermia still persists as a global challenge especially when caring for the most immature and smallest preterm infants. In this narrative overview we aim to provide the reader with a succinct summary of the causes and consequences of hypothermia, the extent of the problem (rates of hypothermia), principles of good thermal care, delivery room preventative measures, the research evidence underpinning existing interventions, current issues in practice, and the way forward. Due to the plethora of research literature available in this subject area, our article will focus primarily on evidence derived from systematic reviews and randomized or quasi-randomized controlled trials assessing the effectiveness of interventions to prevent hypothermia in the most vulnerable (preterm/low birth weight) infants where the intervention or combination of interventions is applied immediately at birth. © 2014.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the transport of phonons between N harmonic oscillators in contact with independent thermal baths and coupled to a common oscillator, and derive an expression for the steady state heat flow between the oscillators in the weak coupling limit. We apply these results to an optomechanical array consisting of a pair of mechanical resonators coupled to a single quantized electromagnetic field mode by radiation pressure as well as to thermal baths with different temperatures. In the weak coupling limit this system is shown to be equivalent to two mutually-coupled harmonic oscillators in contact with an effective common thermal bath in addition to their independent baths. The steady state occupation numbers and heat flows are derived and discussed in various regimes of interest.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The microstructural evolution during short-term (up to 3000 hours) thermal exposure of three 9/12Cr heat-resistant steels was studied, as well as the mechanical properties after exposure. The tempered martensitic lath structure, as well as the precipitation of carbide and MX type carbonitrides in the steel matrix, was stable after 3000 hours of exposure at 873 K (600 °C). A microstructure observation showed that during the short-term thermal exposure process, the change of mechanical properties was caused mainly by the formation and growth of Laves-phase precipitates in the steels. On thermal exposure, with an increase of cobalt and tungsten contents, cobalt could promote the segregation of tungsten along the martensite lath to form Laves phase, and a large size and high density of Laves-phase precipitates along the grain boundaries could lead to the brittle intergranular fracture of the steels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nitride-strengthened martensitic heat resistant steel is precipitation strengthened only by nitrides. In the present work, the effect of nitride precipitation behavior on the impact toughness of an experimental steel was investigated. Nitrides could hardly be observed when the steel was tempered at 650°C. When the tempering temperature was increased to 700°C and 750°C, a large amount of nitrides were observed in the matrix. It was surprising to reveal that the impact energy of the half-size samples greatly increased from several Joules to nearly a hundred Joules. The ductile-brittle transition temperature (DBTT) was also discovered to decrease from room temperature to −50°C when the tempering temperature was increased from 650°C to 750°C. The nitride precipitation with increasing tempering temperature was revealed to be responsible for the improved impact toughness.