269 resultados para HUMAN PROCATHEPSIN L
Resumo:
Type III galactosemia results from reduced activity of the enzyme UDP-galactose 4'-epimerase. Five disease-associated alleles (G90E, V94M, D103G, N34S and L183P) and three artificial alleles (Y105C, N268D, and M284K) were tested for their ability to alleviate galactose-induced growth arrest in a Saccharomyces cerevisiae strain which lacks endogenous UDP-galactose 4'-epimerase. For all of these alleles, except M284K, the ability to alleviate galactose sensitivity was correlated with the UDP-galactose 4'-epimerase activity detected in cell extracts. The M284K allele, however, was able to substantially alleviate galactose sensitivity, but demonstrated near-zero activity in cell extracts. Recombinant expression of the corresponding protein in Escherichia coil resulted in a protein with reduced enzymatic activity and reduced stability towards denaturants in vitro. This lack of stability may result from the introduction of an unpaired positive charge into a bundle of three alpha-helices near the surface of the protein. The disparities between the in vivo and in vitro data for M284K-hGALE further suggest that there are additional, stabilising factors present in the cell. Taken together, these results reinforce the need for care in the interpretation of in vitro, enzymatic diagnostic tests for type III galactosemia. (C) 2011 Elsevier Masson SAS. All rights reserved.
Resumo:
Measles virus (MV) is highly infectious, and has long been thought to enter the host by infecting epithelial cells of the respiratory tract. However, epithelial cells do not express signaling lymphocyte activation molecule (CD150), which is the high-affinity cellular receptor for wild-type MV strains. We have generated a new recombinant MV strain expressing enhanced green fluorescent protein (EGFP), based on a wild-type genotype B3 virus isolate from Khartoum, Sudan (KS). Cynomolgus macaques were infected with a high dose of rMV(KS)EGFP by aerosol inhalation to ensure that the virus could reach the full range of potential target cells throughout the entire respiratory tract. Animals were euthanized 2, 3, 4 or 5 days post-infection (d.p.i., n?=?3 per time point) and infected (EGFP(+)) cells were identified at all four time points, albeit at low levels 2 and 3 d.p.i. At these earliest time points, MV-infected cells were exclusively detected in the lungs by fluorescence microscopy, histopathology and/or virus isolation from broncho-alveolar lavage cells. On 2 d.p.i., EGFP(+) cells were phenotypically typed as large mononuclear cells present in the alveolar lumen or lining the alveolar epithelium. One to two days later, larger clusters of MV-infected cells were detected in bronchus-associated lymphoid tissue (BALT) and in the tracheo-bronchial lymph nodes. From 4 d.p.i. onward, MV-infected cells were detected in peripheral blood and various lymphoid tissues. In spite of the possibility for the aerosolized virus to infect cells and lymphoid tissues of the upper respiratory tract, MV-infected cells were not detected in either the tonsils or the adenoids until after onset of viremia. These data strongly suggest that in our model MV entered the host at the alveolar level by infecting macrophages or dendritic cells, which traffic the virus to BALT or regional lymph nodes, resulting in local amplification and subsequent systemic dissemination by viremia.
Resumo:
Intermedin (IMD) protects rodent heart and vasculature from oxidative stress and ischaemia. Less is known about distribution of IMD and its receptors and the potential for similar protection in man. Expression of IMD and receptor components were studied in human aortic endothelium cells (HAECs), smooth muscle cells (HASMCs), cardiac microvascular endothelium cells (HMVECs) and fibroblasts (v-HCFs). Receptor subtype involvement in protection by IMD against injury by hydrogen peroxide (H2O2, 1 mmol l?¹) and simulated ischaemia and reperfusion were investigated using receptor component-specific siRNAs. IMD and CRLR, RAMP1, RAMP2 and RAMP3 were expressed in all cell types.When cells were treated with 1 nmol l?¹ IMD during exposure to 1 mmol l?¹ H2O2 for 4 h, viability was greater vs. H2O2 alone (P<0.05 for all cell types). Viabilities under 6 h simulated ischaemia differed (P<0.05) in the absence and presence of 1 nmol l?¹ IMD: HAECs 63% and 85%; HMVECs 51% and 68%; v-HCFs 42% and 96%. IMD 1 nmol l?¹ present throughout ischaemia (3 h) and reperfusion (1 h) attenuated injury (P<0.05): viabilities were 95%, 74% and 82% for HAECs, HMVECs and v-HCFs, respectively, relative to those in the absence of IMD (62%, 35%, 32%, respectively). When IMD 1 nmol l?¹ was present during reperfusion only, protection was still evident (P<0.05, 79%, 55%, 48%, respectively). Cytoskeletal disruption and protein carbonyl formation followed similar patterns. Pre-treatment (4 days) of HAECs with CRLR or RAMP2, but not RAMP1 or RAMP3, siRNAs abolished protection by IMD (1 nmol l?¹) against ischaemia-reperfusion injury. IMD protects human vascular and cardiac non-vascular cells from oxidative stress and ischaemia-reperfusion,predominantly via AM1 receptors.
Resumo:
Background
Neutrophil elastase (NE)-mediated inflammation contributes to lung damage in cystic fibrosis (CF). We investigated if DX-890, a small-protein NE inhibitor, could reduce neutrophil trans-epithelial migration and reduce activity released from neutrophils and NE-induced cytokine expression in airway epithelial cells.
Methods
Activated blood neutrophils (CF and healthy) treated ± DX-890 were assayed for NE activity. Transmigration of calcein-labeled neutrophils was studied using a 16HBE14o- epithelial monolayer. IL-8 release from primary nasal epithelial monolayers (CF and healthy) was measured after treatment ± DX-890 and NE or CF sputum.
Results
DX-890 reduced NE activity from neutrophils (CF and healthy) and reduced neutrophil transmigration. DX-890 pre-treatment reduced IL-8 release from epithelial cells of healthy or CF subjects after stimulation with NE and CF sputum sol. All improvements with DX-890 were statistically significant (p < 0.05).
Conclusions
DX-890 reduces NE-mediated transmigration and inflammation. NE inhibition could be useful in managing neutrophilic airway inflammation in CF.
Resumo:
Despite the widespread prevalence of infection with Coxiella burnetii, there have been few large population-based studies examining the epidemiology of this infection. The aim of this study was to examine the distribution and determinants of C. burnetii past infection in Northern Ireland (NI). Coxiella burnetii phase II specific IgG antibodies were measured by enzyme-linked immunosorbent assay in stored serum from 2394 randomly selected subjects, aged 12-64, who had participated in population-based surveys of cardiovascular risk factors performed in 1986 and 1987. The overall prevalence of C. burnetii antibody positivity was 12.8%. The prevalence of sero-positivity was slightly higher in males than that in females (14.3% versus 11.2%, P = 0.02). Sero-positivity was low in children (
Resumo:
Objective and Design: This study examined whether bradykinin and neurokinin A activate human pulmonary mast cells retrieved by bronchoalveolar lavage (BAL).