144 resultados para Bean bacterial wilt
Resumo:
The current study sought to assess the importance of three common variables on the outcome of TiO2 photocatalysis experiments with bacteria. Factors considered were (a) ability of test species to withstand osmotic pressure, (b) incubation period of agar plates used for colony counts following photocatalysis and (c) chemical nature of suspension medium used for bacteria and TiO2. Staphylococcus aureus, Escherichia coli, Salmonella ser. Typhimurium and Pseudomonas aeruginosa were found to vary greatly in their ability to withstand osmotic pressure, raising the possibility that osmotic lysis may be contributing to loss of viability in some photocatalytic disinfection studies. Agar plate incubation time was also found to influence results, as bacteria treated with UV light only grew more slowly than those treated with a combination of UV and TiO2. The chemical nature of the suspension medium used was found to have a particularly pronounced effect upon results. Greatest antibacterial activity was detected when aqueous sodium chloride solution was utilised, with ∼1 × 106 CFU mL-1 S. aureus being completely killed after 60 min. Moderate activity was observed when distilled water was employed with bacteria being killed after 2 h and 30 min, and no antibacterial activity at all was detected when aqueous tryptone solution was used. Interestingly, the antibacterial activity of UV light on its own appeared to be very much reduced in experiments where aqueous sodium chloride was employed instead of distilled water.
Resumo:
A mutant strain (UV4) of the soil bacterium Pseudomonas putida, containing toluene dioxygenase, has been used in the metabolic oxidation of 1,2-dihydrobenzocyclobutene 12 dagger and the related substrates 1,2-dihydrobenzocyclobuten-1-ol 13 and biphenylene 33. Stable angular cis-monohydrodiol metabolites (1R,2S)-bicyclo[4.2.0]octa-3,5-diene-1,2 7, (1S,2S,8S)-bicyclo[4.2.0]octa-3,5-diene-1,2,8-triol 8 and biphenylene-cis-1,8b-diol 9, isolated from each of these substrates, have been structurally and stereochemically assigned. The structure, enantiopurity and absolute configuration of the other cis-diol metabolites, (2R,3S)-bicyclo[4.2.0]octa-1(6),4-diene-2,3-diol 14 and cis-1,2-dihydroxy-1,2-dihydrobenzocyclobutene 16, and the benzylic oxidation bioproducts, 1,2-dihydrobenzocyclobuten-1-ol 13, 1,2-dihydrobenzocyclobuten-1-one 15 and 2-hydroxy-1,2-dihydrobenzocyclobuten-1-one 17, obtained from 1,2-dihydrobenzocyclobutene and 1,2-dihydrobenzocyclobuten-1-ol, have been determined with the aid of chiral stationary-phase HPLC, NMR and CD spectroscopy, and stereochemical correlation. X-Ray crystallographic methods have been used in the determination of absolute configuration of the di-camphanates 27 (from diol 7) and 32 (from diol 9), and the di-MTPA ester 29 (from diol 14) of the corresponding cis-diol metabolites. The metabolic sequence involved in the formation of bioproducts derived from 1,2-dihydrobenzocyclobutene 12 has been investigated.
Resumo:
Benzylic monooxygenation of benzocycloalkenes, 2-4, by enzymes in intact cultures of Pseudomonas putida UV4 yielded exclusively the [R] enantiomers, 6-8, and the derived ketones 10-12; by contrast, biotransformation of benzocyclobutene, 1, yielded both monooxygenation (5 and 9), dioxygenation (13, 14 and 15), and trioxygenation (16) products.
Resumo:
The majority of bacteria in the natural environment live within the confines of a biofilm. The Gram-positive bacterium Bacillus subtilis forms biofilms that exhibit a characteristic wrinkled morphology and a highly hydrophobic surface. A critical component in generating these properties is the protein BslA, which forms a coat across the surface of the sessile community. We recently reported the structure of BslA, and noted the presence of a large surface-exposed hydrophobic patch. Such surface patches are also observed in the class of surface-active proteins known as hydrophobins, and are thought to mediate their interfacial activity. However, although functionally related to the hydrophobins, BslA shares no sequence nor structural similarity, and here we show that the mechanism of action is also distinct. Specifically, our results suggest that the amino acids making up the large, surface-exposed hydrophobic cap in the crystal structure are shielded in aqueous solution by adopting a random coil conformation, enabling the protein to be soluble and monomeric. At an interface, these cap residues refold, inserting the hydrophobic side chains into the air or oil phase and forming a three-stranded β-sheet. This form then self-assembles into a well-ordered 2D rectangular lattice that stabilizes the interface. By replacing a hydrophobic leucine in the center of the cap with a positively charged lysine, we changed the energetics of adsorption and disrupted the formation of the 2D lattice. This limited structural metamorphosis represents a previously unidentified environmentally responsive mechanism for interfacial stabilization by proteins.
Resumo:
Biofilms represent the predominant mode of microbial growth in the natural environment. Bacillus subtilis is a ubiquitous Gram-positive soil bacterium that functions as an effective plant growth-promoting agent. The biofilm matrix is composed of an exopolysaccharide and an amyloid fiber-forming protein, TasA, and assembles with the aid of a small secreted protein, BslA. Here we show that natively synthesized and secreted BslA forms surface layers around the biofilm. Biophysical analysis demonstrates that BslA can self-assemble at interfaces, forming an elastic film. Molecular function is revealed from analysis of the crystal structure of BslA, which consists of an Ig-type fold with the addition of an unusual, extremely hydrophobic "cap" region. A combination of in vivo biofilm formation and in vitro biophysical analysis demonstrates that the central hydrophobic residues of the cap are essential to allow a hydrophobic, nonwetting biofilm to form as they control the surface activity of the BslA protein. The hydrophobic cap exhibits physiochemical properties remarkably similar to the hydrophobic surface found in fungal hydrophobins; thus, BslA is a structurally defined bacterial hydrophobin. We suggest that biofilms formed by other species of bacteria may have evolved similar mechanisms to provide protection to the resident bacterial community.
Resumo:
Bdellovibrio bacteriovorus is a Delta-proteobacterium that oscillates between free-living growth and predation on Gram-negative bacteria including important pathogens of man, animals and plants. After entering the prey periplasm, killing the prey and replicating inside the prey bdelloplast, several motile B. bacteriovorus progeny cells emerge. The B. bacteriovorus HD100 genome encodes numerous proteins predicted to be involved in signalling via the secondary messenger cyclic di-GMP (c-di-GMP), which is known to affect bacterial lifestyle choices. We investigated the role of c-di-GMP signalling in B. bacteriovorus, focussing on the five GGDEF domain proteins that are predicted to function as diguanylyl cyclases initiating c-di-GMP signalling cascades. Inactivation of individual GGDEF domain genes resulted in remarkably distinct phenotypes. Deletion of dgcB (Bd0742) resulted in a predation impaired, obligately axenic mutant, while deletion of dgcC (Bd1434) resulted in the opposite, obligately predatory mutant. Deletion of dgcA (Bd0367) abolished gliding motility, producing bacteria capable of predatory invasion but unable to leave the exhausted prey. Complementation was achieved with wild type dgc genes, but not with GGAAF versions. Deletion of cdgA (Bd3125) substantially slowed predation; this was restored by wild type complementation. Deletion of dgcD (Bd3766) had no observable phenotype. In vitro assays showed that DgcA, DgcB, and DgcC were diguanylyl cyclases. CdgA lacks enzymatic activity but functions as a c-di-GMP receptor apparently in the DgcB pathway. Activity of DgcD was not detected. Deletion of DgcA strongly decreased the extractable c-di-GMP content of axenic Bdellovibrio cells. We show that c-di-GMP signalling pathways are essential for both the free-living and predatory lifestyles of B. bacteriovorus and that obligately predatory dgcC- can be made lacking a propensity to survive without predation of bacterial pathogens and thus possibly useful in anti-pathogen applications. In contrast to many studies in other bacteria, Bdellovibrio shows specificity and lack of overlap in c-di-GMP signalling pathways.
Resumo:
Bdellovibrio bacteriovorus is a small, gram-negative, motile bacterium that preys upon other gram-negative bacteria, including several known human pathogens. Its predation efficiency is usually studied in pure cultures containing solely B. bacteriovorus and a suitable prey. However, in natural environments, as well as in any possible biomedical uses as an antimicrobial, Bdellovibrio is predatory in the presence of diverse decoys, including live nonsusceptible bacteria, eukaryotic cells, and cell debris. Here we gathered and mathematically modeled data from three-member cultures containing predator, prey, and nonsusceptible bacterial decoys. Specifically, we studied the rate of predation of planktonic late-log-phase Escherichia coli S17-1 prey by B. bacteriovorus HD100, both in the presence and in the absence of Bacillus subtilis nonsporulating strain 671, which acted as a live bacterial decoy. Interestingly, we found that although addition of the live Bacillus decoy did decrease the rate of Bdellovibrio predation in liquid cultures, this addition also resulted in a partially compensatory enhancement of the availability of prey for predation. This effect resulted in a higher final yield of Bdellovibrio than would be predicted for a simple inert decoy. Our mathematical model accounts for both negative and positive effects of predator-prey-decoy interactions in the closed batch environment. In addition, it informs considerations for predator dosing in any future therapeutic applications and sheds some light on considerations for modeling the massively complex interactions of real mixed bacterial populations in nature.
Resumo:
The predatory bacterium Bdellovibrio bacteriovorus swims rapidly by rotation of a single, polar flagellum comprised of a helical filament of flagellin monomers, contained within a membrane sheath and powered by a basal motor complex. Bdellovibrio collides with, enters and replicates within bacterial prey, a process previously suggested to firstly require flagellar motility and then flagellar shedding upon prey entry. Here we show that flagella are not always shed upon prey entry and we study the six fliC flagellin genes of B. bacteriovorus, finding them all conserved and expressed in genome strain HD100 and the widely studied lab strain 109J. Individual inactivation of five of the fliC genes gave mutant Bdellovibrio that still made flagella, and which were motile and predatory. Inactivation of the sixth fliC gene abolished normal flagellar synthesis and motility, but a disordered flagellar sheath was still seen. We find that this non-motile mutant was still able to predate when directly applied to lawns of YFP-labelled prey bacteria, showing that flagellar motility is not essential for prey entry but important for efficient encounters with prey in liquid environments.
Resumo:
Anaerobic bacteria have been identified in abundance in the airways of cystic fibrosis (CF) subjects. The impact their presence and abundance has on lung function and inflammation is unclear. The aim of this study was to investigate the relationship between the colony count of aerobic and anaerobic bacteria, lung clearance index (LCI), spirometry and C-Reactive Protein (CRP) in patients with CF. Sputum and blood were collected from CF patients at a single cross-sectional visit when clinically stable. Community composition and bacterial colony counts were analysed using extended aerobic and anaerobic culture. Patients completed spirometry and a multiple breath washout (MBW) test to obtain LCI. An inverse correlation between colony count of aerobic bacteria (n = 41, r = -0.35; p = 0.02), anaerobic bacteria (n = 41, r = -0.44, p = 0.004) and LCI was observed. There was an inverse correlation between colony count of anaerobic bacteria and CRP (n = 25, r = -0.44, p = 0.03) only. The results of this study demonstrate that a lower colony count of aerobic and anaerobic bacteria correlated with a worse LCI. A lower colony count of anaerobic bacteria also correlated with higher CRP levels. These results indicate that lower abundance of aerobic and anaerobic bacteria may reflect microbiota disruption and disease progression in the CF lung.
Resumo:
The singlet excited state of the 4-aminonaphthalimide fluorophore in 1a and 1b directs electron transfer from intramolecular but external amine groups along only one of two available paths.
Resumo:
The spatial location of microorganisms in the soil three-dimensional structure with respect to their substrates plays an important role in the persistence and turnover of natural and xenobiotic organic compounds. To study the effect of spatial location on the mineralisation of 14C-2,4-dichlorophenol (2,4-DCP, 0.15 or 0.31 μmol g-1) and 14C-glucose (2.77 μmol g-1), columns packed with autoclaved soil aggregates (2-5 mm) were used. Using a chloride tracer of water movement, the existence of 'immobile' water, which was by-passed by preferentially flowing 'mobile' water, was demonstrated. By manipulation of the soil moisture content, the substrates were putatively placed to these conceptual hydrological domains (immobile and mobile water). Leaching studies revealed that approximately 1.7 (glucose) and 3.4 (2.4-DCP) times the amount of substrate placed in mobile water was recovered in the first 4 fractions of leachate when compared to substrate placed in immobile water. The marked difference in the breakthrough curves was taken as evidence of successful substrate placement. The 2,4-DCP degrading bacterium, Burkholderia sp. RASCc2, was inoculated in mobile water (1.8-5.2 × 107 cells g-1 soil) and parameters (asymptote, time at maximum rate, calculated maximum rate) describing the mineralisation kinetics of 2,4-DCP and glucose previously added to immobile or mobile water domains were compared, For glucose, there was no significant effect (P > 0.1) of substrate placement on any of the mineralisation parameters. However, substrate placement had a significant effect (P < 0.05) on parameters describing 2,4-DCP mineralisation. In particular, 2,4-DCP added in mobile water was mineralised with a greater maximum rate and with a reduced time at maximum rate when compared to 2,4-DCP added to immobile water. The difference in response between the two test substrates may reflect the importance of sorption in controlling the spatial bioavailability of compounds in soil. © 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
A bacterial bioassay has been developed to assess the relative toxicities of xenobiotics commonly found in contaminated soils, rivers, waters, and ground waters. The assay utilized decline in luminescence of lux- marked Pseudomonas fluorescens on exposure to xenobiotics. Pseudomonas fluorescens is a common bacterium in the terrestrial environment, providing environmental relevance to soil, river, and ground water systems. Three principal environmental contaminants associated with benzene degradation were exposed to the luminescence-marked bacterial biosensor to assess their toxicity individually and in combination. Median effective concentration (EC50) values for decline in luminescence were determined for benzene, catechol, and phenol and were found to be 39.9, 0.77, and 458.6 mg/L, respectively. Catechol, a fungal and bacterial metabolite of benzene, was found to be significantly more toxic to the biosensor than was the parent compound benzene, showing that products of xenobiotic biodegradation may be more toxic than the parent compounds. Combinations of parent compounds and metabolites were found to be significantly more toxic to the bioassay than were the individual compounds themselves. Development of this bioassay has provided a rapid screening system suitable for assessing the toxicity of xenobiotics commonly found in contaminated soil, river, and ground-water environments. The assay can be utilized over a wide pH range and is therefore more applicable to such environmental systems than bioluminescence-based bioassays that utilize marine organisms and can only be applied over a limited pH and salinity range.
Resumo: