141 resultados para ARRAY ELECTRODES
Resumo:
The electrochemical reduction of 1-bromo-4-nitrobenzene (p-BrC6H4NO2) at zinc microelectrodes in the [C(4)mPyrr][NTf2] ionic liquid was investigated via cyclic voltammetry. The reduction was found to occur via an EC type mechanism, where p-BrC6H4NO2 is first reduced by one electron, quasi-reversibly, to yield the corresponding radical anion. The radical anions then react with the Zn electrode to form arylzinc products. Introduction of carbon dioxide into the system led to reaction with the arylzinc species, fingerprinting the formation of the latter. This method thus demonstrates a proof-of-concept of the formation of functionalised arylzinc species.
Resumo:
To develop a detection method for human pathogenic Listeria monocytogenes, novel specific antibodies were obtained from hybridoma libraries generated by using formalin-killed and heat-killed L. monocytogenes as immunogens. Several monoclonal antibodies found to be specific to Listeria spp or L. monocytogenes were evaluated for their applicability as binders for bead array and sandwichELISA for detection of L. monocytogenes in buffer and in 11 different food types. The bead array format consistently demonstrated lower detection limits and was less affected by interference from food matrices than the sandwich ELISA format. However, the obtained detection limits were not sufficient to satisfy the required standard for L. monocytogenes testing. Therefore, the international organizationfor standardization (ISO 11290-1:1996) methods for pre-enrichment and enrichment were employed to increase the bacteria numbers. When compared to the standard plating method, the bead array was able to detect the bacteria with the same accuracy even at the 1 CFU level after only 24 hours of the enrichment period. In addition, Listeria-specific 3C3 and L. monocytogenes-specific 7G4 antibodies were successfully employed to construct a multiplex detection for Listeria, Salmonella and Campylobacter in a bead array format by combining with commercial Salmonella-specific and available Campylobacter-specific antibodies.
Resumo:
The finite difference time domain (FDTD) method has direct applications in musical instrument modeling, simulation of environmental acoustics, room acoustics and sound reproduction paradigms, all of which benefit from auralization. However, rendering binaural impulse responses from simulated
data is not straightforward to accomplish as the calculated pressure at FDTD grid nodes does not contain any directional information. This paper addresses this issue by introducing a spherical array to capture sound pressure on a finite difference grid, and decomposing it into a plane-wave density
function. Binaural impulse responses are then constructed in the spherical harmonics domain by combining the decomposed grid data with free field head-related transfer functions. The effects of designing a spherical array in a Cartesian grid are studied, and emphasis is given to the relationships
between array sampling and the spatial and spectral design parameters of several finite-difference
schemes.
Resumo:
Ambisonics and Higher Order Ambisonics (HOA) are scalable spatial audio techniques that attempt to present a sound scene to listeners over as large an area as possible. A localisation experiment was carried out to investigate the performance of a first and third order system at three listening positions - one in the centre and two off-centre - using a 5 m radius loudspeaker array. The results are briefly presented and compared to those of an earlier experiment on a 2.2 m loudspeaker array. In both experiments the off-centre listeners were placed such that the ratio of distance from the centre to the array radius was constant in both experiments. The test used a reverse target-pointer adjustment method to determine the error, both signed and absolute, for each combination of listening position and system. The results for both arrays were found to be very similar, suggesting that the relative amplitude of the loudspeakers, which were the same in both cases, was more dominant for localisation than the arrival time differences, which differed between array sizes.
Resumo:
In this paper, we probed surface-enhanced Raman scattering (SERS) and surface-enhanced fluorescence (SEF) from probe molecule Rhodamine 6G (R6G) on self-standing Au nanorod array substrates made using a combination of anodization and potentiostatic electrodeposition. The initial substrates were embedded within a porous alumina template (AAO). By controlling the thickness of the AAO matrix, SEF and SERS were observed exhibiting an inverse relationship. SERS and SEF showed a non-linear response to the removal of AAO matrix due to an inhomogeneous plasmon activity across the nanorod which was supported by FDTD calculations. We showed that by optimizing the level of AAO thickness, we could obtain either maximized SERS, SEF or simultaneously observe both SERS and SEF together.
Resumo:
Unlike the mathematical techniques adopted in classical cryptographic technology at higher protocol layers, it is shown that characteristics intrinsic to the physical layer can be exploited to secure useful information. It is shown that a retrodirective array can be made to operate more securely by incorporating directional modulation (DM) concepts. The presented new approach allows DM to operate in a multipath environment. Previously, DM systems could only operate in free space.
Resumo:
We consider the dynamics of an array of mutually interacting cavities, each containing an ensemble of N two-level atoms. By exploring the possibilities offered by ensembles of various dimensions and a range of atom-light and photon-hopping values, we investigate the generation of multisite entanglement, as well as the performance of excitation transfer across the array, resulting from the competition between on-site nonlinearities of the matter-light interaction and intersite photon hopping. In particular, for a three-cavity interacting system it is observed that the initial excitation in the first cavity completely transfers to the ensemble in the third cavity through the hopping of photons between the adjacent cavities. Probabilities of the transfer of excitation of the cavity modes and ensembles exhibit characteristics of fast and slow oscillations governed by coupling and hopping parameters, respectively. In the large-hopping case, by seeding an initial excitation in the cavity at the center of the array, a tripartite W state, as well as a bipartite maximally entangled state, is obtained, depending on the interaction time. Population of the ensemble in a cavity has a positive impact on the rate of excitation transfer between the ensembles and their local cavity modes. In particular, for ensembles of five to seven atoms, tripartite W states can be produced even when the hopping rate is comparable to the cavity-atom coupling rate. A similar behavior of the transfer of excitation is observed for a four-coupled-cavity system with two initial excitations.
Resumo:
Unlike the mathematical encryption and decryption adopted in the classical cryptographic technology at the higher protocol layers, it is shown that characteristics intrinsic to the physical layer, such as wireless channel propagation, can be exploited to lock useful information. This information then can be automatically unlocked using real time analog RF means. In this paper retrodirective array, RDA, technology for spatial encryption in the multipath environment is for the first time combined with the directional modulation, DM, method normally associated with free space secure physical layer communications. We show that the RDA can be made to operate more securely by borrowing DM concepts and that the DM enhanced RDA arrangement is suitable for use in a multipath environment.
Resumo:
The use of anodic stripping voltammetry (ASV)has been proven in the past to be a precise and sensitive analytical method with an excellent limit of detection. Electrochemical sensors could help to avoid expensive and time consuming procedures as sample taking and storage and provide a both sensitive and reliable method for the direct monitoring of heavy metals in the aquatic environment. Solid electrodes which have been used in this work, were produced using previously developed methods. Commercially available and newly designed, screen printed carbon and gold plated working electrodes (WE) were compared. Good results were achieved with the screen printed and plated electrodes under conditions optimized for each electrode material. The electrode stability, reproducibility of single measurements and the limit of detection obtained for Pb were satisfactory (3*10-6mol/l on screen printed carbon WEs after 60 s of deposition and 6*10-6 mol/l on gold plated WEs after 5 min of deposition). Complete 3-electrode-sets (counter, reference and working electrode) were screen printed on different substrates (glass, polycarbonate and alumina). Also here, both carbon and gold were used as WE. Using 3-electrode-sets with a gold plated WE on glass was a limit of detection of 7*10-7 mol/l was achieved after only 60 s of deposition.
Resumo:
The voltammetry for the reduction of 2-nitrotoluene at a gold microdisk electrode is reported in two ionic liquids: trihexyltetradecylphosphonium tris(pentafluoroethyl)trifluorophosphate ([P-14,P-6,P-6,P-6][FAP]) and 1-ethyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide ([Emim][NTf2]). The reduction of nitrocyclopentane (NCP) and 1-nitrobutane (BuN) was investigated using voltammetry at a gold microdisk electrode in the ionic liquid [P-14,P-6,P-6,P-6][FAP]. Simulated voltammograms, generated through the use of ButlerVolmer theory and symmetric MarcusHush theory, were compared to experimental data, with both theories parametrizing the data similarly well. An experimental value for the Marcusian parameter, 1 was also determined in all cases. For the reduction of 2-nitrotoluene, this was 0.5 +/- 0.1 eV in both solvents, while for NCP and BuN in [P-14,P-6,P-6,P-6][FAP], it was 2 +/- 0.1 and 5 +/- 0.1 eV, respectively. This is attributed to the localization of charge on the nitro group and the primary nitro alkyls increased interaction with the environment, resulting in a larger reorganization energy.
Resumo:
In this reported work, the frequency diverse array concept is employed to construct an orthogonal frequency-division multiplexing (OFDM) transmitter that has the capability of securing wireless communication in free space directly in the physical-layer without the need for mathematical encryption. The characteristics of the proposed scheme in terms of its secrecy performance are validated via bit error rate simulation under both high and low signal to noise ratio scenarios using the IEEE 802.11 OFDM physical-layer specification.
A new look towards BAC-based array CGH through a comprehensive comparison with oligo-based array CGH
Resumo:
BACKGROUND: Currently, two main technologies are used for screening of DNA copy number; the BAC (Bacterial Artificial Chromosome) and the recently developed oligonucleotide-based CGH (Chromosomal Comparative Genomic Hybridization) arrays which are capable of detecting small genomic regions with amplification or deletion. The correlation as well as the discriminative power of these platforms has never been compared statistically on a significant set of human patient samples.
RESULTS: In this paper, we present an exhaustive comparison between the two CGH platforms, undertaken at two independent sites using the same batch of DNA from 19 advanced prostate cancers. The comparison was performed directly on the raw data and a significant correlation was found between the two platforms. The correlation was greatly improved when the data were averaged over large chromosomic regions using a segmentation algorithm. In addition, this analysis has enabled the development of a statistical model to discriminate BAC outliers that might indicate microevents. These microevents were validated by the oligo platform results.
CONCLUSION: This article presents a genome-wide statistical validation of the oligo array platform on a large set of patient samples and demonstrates statistically its superiority over the BAC platform for the Identification of chromosomic events. Taking advantage of a large set of human samples treated by the two technologies, a statistical model has been developed to show that the BAC platform could also detect microevents.