130 resultados para AMYLOIDOGENESIS INHIBITORS
Resumo:
BACKGROUND: The optimal ways of using aromatase inhibitors or tamoxifen as endocrine treatment for early breast cancer remains uncertain.
METHODS: We undertook meta-analyses of individual data on 31 920 postmenopausal women with oestrogen-receptor-positive early breast cancer in the randomised trials of 5 years of aromatase inhibitor versus 5 years of tamoxifen; of 5 years of aromatase inhibitor versus 2-3 years of tamoxifen then aromatase inhibitor to year 5; and of 2-3 years of tamoxifen then aromatase inhibitor to year 5 versus 5 years of tamoxifen. Primary outcomes were any recurrence of breast cancer, breast cancer mortality, death without recurrence, and all-cause mortality. Intention-to-treat log-rank analyses, stratified by age, nodal status, and trial, yielded aromatase inhibitor versus tamoxifen first-event rate ratios (RRs).
FINDINGS: In the comparison of 5 years of aromatase inhibitor versus 5 years of tamoxifen, recurrence RRs favoured aromatase inhibitors significantly during years 0-1 (RR 0·64, 95% CI 0·52-0·78) and 2-4 (RR 0·80, 0·68-0·93), and non-significantly thereafter. 10-year breast cancer mortality was lower with aromatase inhibitors than tamoxifen (12·1% vs 14·2%; RR 0·85, 0·75-0·96; 2p=0·009). In the comparison of 5 years of aromatase inhibitor versus 2-3 years of tamoxifen then aromatase inhibitor to year 5, recurrence RRs favoured aromatase inhibitors significantly during years 0-1 (RR 0·74, 0·62-0·89) but not while both groups received aromatase inhibitors during years 2-4, or thereafter; overall in these trials, there were fewer recurrences with 5 years of aromatase inhibitors than with tamoxifen then aromatase inhibitors (RR 0·90, 0·81-0·99; 2p=0·045), though the breast cancer mortality reduction was not significant (RR 0·89, 0·78-1·03; 2p=0·11). In the comparison of 2-3 years of tamoxifen then aromatase inhibitor to year 5 versus 5 years of tamoxifen, recurrence RRs favoured aromatase inhibitors significantly during years 2-4 (RR 0·56, 0·46-0·67) but not subsequently, and 10-year breast cancer mortality was lower with switching to aromatase inhibitors than with remaining on tamoxifen (8·7% vs 10·1%; 2p=0·015). Aggregating all three types of comparison, recurrence RRs favoured aromatase inhibitors during periods when treatments differed (RR 0·70, 0·64-0·77), but not significantly thereafter (RR 0·93, 0·86-1·01; 2p=0·08). Breast cancer mortality was reduced both while treatments differed (RR 0·79, 0·67-0·92), and subsequently (RR 0·89, 0·81-0·99), and for all periods combined (RR 0·86, 0·80-0·94; 2p=0·0005). All-cause mortality was also reduced (RR 0·88, 0·82-0·94; 2p=0·0003). RRs differed little by age, body-mass index, stage, grade, progesterone receptor status, or HER2 status. There were fewer endometrial cancers with aromatase inhibitors than tamoxifen (10-year incidence 0·4% vs 1·2%; RR 0·33, 0·21-0·51) but more bone fractures (5-year risk 8·2% vs 5·5%; RR 1·42, 1·28-1·57); non-breast-cancer mortality was similar.
INTERPRETATION: Aromatase inhibitors reduce recurrence rates by about 30% (proportionately) compared with tamoxifen while treatments differ, but not thereafter. 5 years of an aromatase inhibitor reduces 10-year breast cancer mortality rates by about 15% compared with 5 years of tamoxifen, hence by about 40% (proportionately) compared with no endocrine treatment.
FUNDING: Cancer Research UK, Medical Research Council.
Resumo:
Prostate cancer is the second most common cause of cancer-associated deaths in men, and signaling via a transcription factor called androgen receptor (AR) is an important driver of the disease. Consequently, AR target genes are prominent candidates to be specific for prostate cancer and also important for the survival of the cancer cells. Here we assess the levels of all hexosamine biosynthetic pathway (HBP) enzymes in 15 separate clinical gene expression data sets and identify the last enzyme in the pathway, UDP-N-acetylglucosamine pyrophosphorylase 1 (UAP1), to be highly overexpressed in prostate cancer. We analyzed 3261 prostate cancers on a tissue microarray and found that UAP1 staining correlates negatively with Gleason score (P=0.0039) and positively with high AR expression (P<0.0001). Cells with high UAP1 expression have 10-fold increased levels of the HBP end-product, UDP-N-acetylglucosamine (UDP-GlcNAc). UDP-GlcNAc is essential for N-linked glycosylation occurring in the endoplasmic reticulum (ER) and high UAP1 expression associates with resistance against inhibitors of N-linked glycosylation (tunicamycin and 2-deoxyglucose) but not with a general ER stress-inducing agent, the calcium ionophore A23187. Knockdown of UAP1 expression re-sensitized cells towards inhibitors of N-linked glycosylation, as measured by proliferation and activation of ER stress markers. Taken together, we have identified an enzyme, UAP1, which is highly overexpressed in prostate cancer and protects cancer cells from ER stress conferring a growth advantage.
Resumo:
Despite compelling preclinical data in colorectal cancer (CRC), the efficacy of HDACIs has been disappointing in the clinic. The goal of this study was to evaluate the effectiveness of vorinostat and panobinostat in a dose- and exposure-dependent manner in order to better understand the dynamics of drug action and antitumor efficacy. In a standard 72 h drug exposure MTS assay, notable concentration-dependent antiproliferative effects were observed in the IC50 range of 1.2-2.8 μmol/L for vorinostat and 5.1-17.5 nmol/L for panobinostat. However, shorter clinically relevant exposures of 3 or 6 h failed to elicit any significant growth inhibition and in most cases a >24 h exposure to vorinostat or panobinostat was required to induce a sigmoidal dose-response. Similar results were observed in colony formation assays where ≥ 24 h of exposure was required to effectively reduce colony formation. Induction of acetyl-H3, acetyl-H4 and p21 by vorinostat were transient and rapidly reversed within 12 h of drug removal. In contrast, panobinostat-induced acetyl-H3, acetyl-H4, and p21 persisted for 48 h after an initial 3 h exposure. Treatment of HCT116 xenografts with panobinostat induced significant increases in acetyl-H3 and downregulation of thymidylate synthase after treatment. Although HDACIs exert both potent growth inhibition and cytotoxic effects when CRC cells were exposed to drug for ≥ 24 h, these cells demonstrate an inherent ability to survive HDACI concentrations and exposure times that exceed those clinically achievable. Continued efforts to develop novel HDACIs with improved pharmacokinetics/phamacodynamics, enhanced intratumoral delivery and class/isoform-specificity are needed to improve the therapeutic potential of HDACIs and HDACI-based combination regimens in solid tumors.
Resumo:
BACKGROUND: Despite the significant progress made in colon cancer chemotherapy, advanced disease remains largely incurable and novel efficacious chemotherapies are urgently needed. Histone deacetylase inhibitors (HDACi) represent a novel class of agents which have demonstrated promising preclinical activity and are undergoing clinical evaluation in colon cancer. The goal of this study was to identify genes in colon cancer cells that are differentially regulated by two clinically advanced hydroxamic acid HDACi, vorinostat and LBH589 to provide rationale for novel drug combination partners and identify a core set of HDACi-regulated genes.
METHODS: HCT116 and HT29 colon cancer cells were treated with LBH589 or vorinostat and growth inhibition, acetylation status and apoptosis were analyzed in response to treatment using MTS, Western blotting and flow cytometric analyses. In addition, gene expression was analyzed using the Illumina Human-6 V2 BeadChip array and Ingenuity Pathway Analysis.
RESULTS: Treatment with either vorinostat or LBH589 rapidly induced histone acetylation, cell cycle arrest and inhibited the growth of both HCT116 and HT29 cells. Bioinformatic analysis of the microarray profiling revealed significant similarity in the genes altered in expression following treatment with the two HDACi tested within each cell line. However, analysis of genes that were altered in expression in the HCT116 and HT29 cells revealed cell-line-specific responses to HDACi treatment. In addition a core cassette of 11 genes modulated by both vorinostat and LBH589 were identified in both colon cancer cell lines analyzed.
CONCLUSION: This study identified HDACi-induced alterations in critical genes involved in nucleotide metabolism, angiogenesis, mitosis and cell survival which may represent potential intervention points for novel therapeutic combinations in colon cancer. This information will assist in the identification of novel pathways and targets that are modulated by HDACi, providing much-needed information on HDACi mechanism of action and providing rationale for novel drug combination partners. We identified a core signature of 11 genes which were modulated by both vorinostat and LBH589 in a similar manner in both cell lines. These core genes will assist in the development and validation of a common gene set which may represent a molecular signature of HDAC inhibition in colon cancer.
Resumo:
Despite recent therapeutic advances, the response rates to chemotherapy for patients with metastatic colon cancer remain at approximately 50% with the fluoropyrimidine, 5-fluorouracil (5-FU), continuing to serve as the foundation chemotherapeutic agent for the treatment of this disease. Previous studies have demonstrated that overexpression of thymidylate synthase (TS) is a key determinant of resistance to 5-FU-based chemotherapy. Therefore, there is a significant need to develop alternative therapeutic strategies to overcome TS-mediated resistance. In this study, we demonstrate that the histone deacetylase inhibitors (HDACi) vorinostat and LBH589 significantly downregulate TS gene expression in a panel of colon cancer cell lines. Downregulation of TS was independent of p53, p21 and HDAC2 expression and was achievable in vivo as demonstrated by mouse xenograft models. We provide evidence that HDACi treatment leads to a potent transcriptional repression of the TS gene. Combination of the fluoropyrimidines 5-FU or FUdR with both vorinostat and LBH589 enhanced cell cycle arrest and growth inhibition. Importantly, the downstream effects of TS inhibition were significantly enhanced by this combination including the inhibition of acute TS induction and the enhanced accumulation of the cytotoxic nucleotide intermediate dUTP. These data demonstrate that HDACi repress TS expression at the level of transcription and provides the first evidence suggesting a direct mechanistic link between TS downregulation and the synergistic interaction observed between HDACi and 5-FU. This study provides rationale for the continued clinical evaluation of HDACi in combination with 5-FU-based therapies as a strategy to overcome TS-mediated resistance.
Resumo:
The peptides derived from envelope proteins have been shown to inhibit the protein-protein interactions in the virus membrane fusion process and thus have a great potential to be developed into effective antiviral therapies. There are three types of envelope proteins each exhibiting distinct structure folds. Although the exact fusion mechanism remains elusive, it was suggested that the three classes of viral fusion proteins share a similar mechanism of membrane fusion. The common mechanism of action makes it possible to correlate the properties of self-derived peptide inhibitors with their activities. Here we developed a support vector machine model using sequence-based statistical scores of self-derived peptide inhibitors as input features to correlate with their activities. The model displayed 92% prediction accuracy with the Matthew’s correlation coefficient of 0.84, obviously superior to those using physicochemical properties and amino acid decomposition as input. The predictive support vector machine model for self- derived peptides of envelope proteins would be useful in development of antiviral peptide inhibitors targeting the virus fusion process.
Resumo:
This letter describes the design, development and SAR exploration of a novel series of small legumain inhibitors. The SAR of a new small molecule legumain inhibitor chemotype was explored and found to have improved physiochemical properties compared to previously developed inhibitors within our group. However, further development of this series was found to be limited as the SAR was observed to be relatively flat.
Resumo:
: High-grade serous ovarian cancer is characterized by genomic instability, with one half of all tumors displaying defects in the important DNA repair pathway of homologous recombination. Given the action of poly(ADP-ribose) polymerase (PARP) inhibitors in targeting tumors with deficiencies in this repair pathway by loss of BRCA1/2, ovarian tumors could be an attractive population for clinical application of this therapy. PARP inhibitors have moved into clinical practice in the past few years, with approval from the Food and Drug Administration (FDA) and European Medicines Agency (EMA) within the past 2 years. The U.S. FDA approval of olaparib applies to fourth line treatment in germline BRCA-mutant ovarian cancer, and European EMA approval to olaparib maintenance in both germline and somatic BRCA-mutant platinum-sensitive ovarian cancer. In order to widen the ovarian cancer patient population that would benefit from PARP inhibitors, predictive biomarkers based on a clear understanding of the mechanism of action are required. Additionally, a better understanding of the toxicity profile is needed if PARP inhibitors are to be used in the curative, rather than the palliative, setting. We reviewed the development of PARP inhibitors in phase I-III clinical trials, including combination trials of PARP inhibitors and chemotherapy/antiangiogenics, the approval for these agents, the mechanisms of resistance, and the outstanding issues, including the development of biomarkers and the rate of long-term hematologic toxicities with these agents.
IMPLICATIONS FOR PRACTICE: The poly(ADP-ribose) polymerase (PARP) inhibitor olaparib has recently received approval from the Food and Drug Administration (FDA) and European Medicines Agency (EMA), with a second agent (rucaparib) likely to be approved in the near future. However, the patient population with potential benefit from PARP inhibitors is likely wider than that of germline BRCA mutation-associated disease, and biomarkers are in development to enable the selection of patients with the potential for clinical benefit from these agents. Questions remain regarding the toxicities of PARP inhibitors, limiting the use of these agents in the prophylactic or adjuvant setting until more information is available. The indications for olaparib as indicated by the FDA and EMA are reviewed.
Resumo:
The tapeworm Echinococcus granulosus is responsible for cystic echinococcosis (CE), a cosmopolitan disease which imposes a significant burden on the health and economy of affected communities. Little is known about the molecular mechanisms whereby E. granulosus is able to survive in the hostile mammalian host environment, avoiding attack by host enzymes and evading immune responses, but protease inhibitors released by the parasite are likely implicated. We identified two nucleotide sequences corresponding to secreted single domain Kunitz type protease inhibitors (EgKIs) in the E. granulosus genome, and their cDNAs were cloned, bacterially expressed and purified. EgKI-1 is highly expressed in the oncosphere (egg) stage and is a potent chymotrypsin and neutrophil elastase inhibitor that binds calcium and reduced neutrophil infiltration in a local inflammation model. EgKI-2 is highly expressed in adult worms and is a potent inhibitor of trypsin. As powerful inhibitors of mammalian intestinal proteases, the EgKIs may play a pivotal protective role in preventing proteolytic enzyme attack thereby ensuring survival of E. granulosus within its mammalian hosts. EgKI-1 may also be involved in the oncosphere in host immune evasion by inhibiting neutrophil elastase and cathepsin G once this stage is exposed to the mammalian blood system. In light of their key roles in protecting E. granulosus from host enzymatic attack, the EgKI proteins represent potential intervention targets to control CE. This is important as new public health measures against CE are required, given the inefficiencies of available drugs and the current difficulties in its treatment and control. In addition, being a small sized highly potent serine protease inhibitor, and an inhibitor of neutrophil chemotaxis, EgKI-1 may have clinical potential as a novel anti-inflammatory therapeutic.
Resumo:
Clinical outcome following chemotherapy for malignant pleural mesothelioma is poor and improvements are needed. This preclinical study investigates the effect of five tyrosine kinase inhibitors (PTK787, ZD6474, ZD1839, SU6668 and SU11248) on the growth of three mesothelioma cell lines (NCI H226, NCI H28 and MSTO 211H), the presence of growth factor receptors and inhibition of their downstream signalling pathways. GI50 values were determined: ZD6474 and SU11248, mainly VEGFR2 inhibitors, gave the lowest GI50 across all cell lines (3.5-6.9 microM) whereas ZD1839 gave a GI50 in this range only in H28 cells. All cell lines were positive for EGFR, but only H226 cells were positive for VEGFR2 by Western blotting. ZD6474 and ZD1839 inhibited EGF-induced phosphorylation of EGFR, AKT and ERK, whereas VEGF-induced phosphorylation of VEGFR2 was completely inhibited with 0.1 microM SU11248. VEGFR2 was detected in tumour samples by immunohistochemistry. VEGFR2 tyrosine kinase inhibitors warrant further investigation in mesothelioma.