166 resultados para virus shedding


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study the design and development of two real-time PCR assays for the rapid, sensitive and specific detection of infectious laryngotracheitis virus (ILTV) DNA is described. A Primer-Probe Energy Transfer (PriProET) assay and 5' conjugated Minor Groove Binder (MGB) method are compared and contrasted. Both have been designed to target the thymidine kinase gene of the ILTV genome. Both PriProET and MGB assays are capable of detecting 20 copies of a DNA standard per reaction and are linear from 2 x 10(8) to 2 x 10(2) copies/mu l. Neither PriProET, nor MGB reacted with heterologous herpesviruses, indicating a high specificity of the two methods as novel tools for virus detection and identification. This study demonstrates the suitability of PriProET and 5' conjugated MGB probes as real-time PCR chemistries for the diagnosis of respiratory diseases caused by ILTV. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel assay for the pan-serotypic detection of foot-and-mouth disease virus (FMDV) was designed using a 5' conjugated minor groove binder (MGB) probe real-time RT-PCR system. This assay targets the 3D region of the FMDV genome and is capable of detecting 20 copies of a transcribed RNA standard. The linear range of the test was eight logs from 2 x 10(1) to 2 x 10(8) copies and amplification time was approximately 2 h. Using a panel of 83 RNA samples from representative FMDV isolates, the diagnostic sensitivity of this test was shown to be equivalent to a TaqMan real-time RT-PCR that targets the 5' untranslated region of FMDV. Furthermore, the assay does not detect viruses causing similar clinical diseases in pigs such as swine vesicular disease virus and vesicular stomatitis virus, nor does it detect marine caliciviruses causing vesicular exanthema. The development of this assay provides a useful tool for the differential diagnosis of FMD, potentially for use in statutory or emergency testing programmes, or for detection of FMDV RNA in research applications. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The design and development of a 5' conjugated minor groove binder (MGB) probe real-time RT-PCR assay are described for rapid, sensitive and specific detection of swine vesicular disease virus (SVDV) RNA. The assay is designed to target the 2C gene of the SVDV genome and is capable of detecting 2 x 10(2) copies of an RNA standard per reaction. It does not detect any of the other RNA viruses that cause vesicular disease in pigs, or the human enterovirus, Coxsackie B5 virus (CVB5) which is closely related antigenically to SVDV. The linear range of this test was from 2 x 10(2) to 2 x 10(8) copies/mu l. The assay is rapid and can detect SVDV RNA in just over 3.5 h including the time required for nucleic acid extraction. The development of this assay provides a useful tool for the differential diagnosis of SVD or for the detection of SVDV in research applications. This study demonstrates the suitability of MGB probes as a real-time PCR chemistry for the diagnosis of swine vesicular disease. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The design of a 5' conjugated minor groove binder (MGB) probe real-time PCR assay is described for the rapid, sensitive and specific detection of African swine fever virus (ASFV) DNA. The assay is designed against the 9GL region and is capable of detecting 20 copies of a DNA standard. It does not detect any of the other common swine DNA viruses tested in this study. The assay can detect ASFV DNA in a range of clinical samples. Sensitivity was equivalent to the Office International des Epizooties (OIE) recommended TaqMan assay. In addition the assay was found to have a detection limit 10-fold more sensitive than the conventional PCR recommended by the OIE. Linear range was ten logs from 2 x 10(1) to 2 x 10(10). The assay is rapid with an amplification time just over 2 h. The development of this assay provides a useful tool for the specific diagnosis of ASF in statutory or emergency testing programs or for the detection of ASFV DNA in research applications. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Porcine circovirus type 2 (PCV-2) has been found to be the causative agent of postweaning multisystemic wasting syndrome (PMWS). However, PCV-2 is a ubiquitous virus in the swine population and a majority of pigs infected with PCV-2 do not develop the disease. Different factors such as age, maintenance, the genetics of PCV-2, other pathogens, etc. have been suggested to contribute to the development of PMWS. However, so far no proven connection between any of these factors and the disease development has been found. In this study we explored the possible presence of other so far unknown DNA containing infectious agents in lymph nodes collected from Swedish pigs with confirmed PMWS through random amplification and high-throughput sequencing. Although the vast majority of the amplified genetic sequences belonged to PCV-2, we also found genome sequences of Torque Teno virus (TTV) and of a novel parvovirus. The detection of TTV was expected since like PCV-2, TTV has been found to have high prevalence in pigs around the world. We were able to amplify a longer region of the parvovirus genome, consisting of the entire NP1 and partial VP1/2. By comparative analysis of the nucleotide sequences and phylogenetic studies we propose that this is a novel porcine parvovirus, with genetic relationship to bocaviruses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective-TO determine whether commercial Mycoplasma hyopneumoniae bacterins sold for use in swine contain porcine torque teno virus (TTV).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective—To determine whether genogroup 1 porcine torque teno virus (g1-TTV) can potentiate clinical disease associated with porcine circovirus type 2 (PCV2).

Sample population—33 gnotobiotic baby pigs.

Procedures—Pigs were allocated into 7 groups: group A, 5 uninoculated control pigs from 3 litters; group B, 4 pigs oronasally inoculated with PCV2 alone; group C, 4 pigs inoculated IP with first-passage g1-TTV alone; group D, 4 pigs inoculated IP with fourth-passage g1-TTV alone; group E, 6 pigs inoculated IP with first-passage g1-TTV and then oronasally inoculated with PCV2 7 days later; group F, 6 pigs inoculated IP with fourth-passage g1-TTV and then inoculated oronasally with PCV2 7 days later; and group G, 4 pigs inoculated oro-nasally with PCV2 and then inoculated IP with fourth-passage g1-TTV 7 days later.

Results—6 of 12 pigs inoculated with g1-TTV prior to PCV2 developed acute onset of postweaning multisystemic wasting syndrome (PMWS). None of the pigs inoculated with g1-TTV alone or PCV2 alone or that were challenge exposed to g1-TTV after establishment of infection with PCV2 developed clinical illness. Uninoculated control pigs remained healthy.

Conclusions and Clinical Relevance—These data implicated g1-TTV as another viral infection that facilitates PCV2-induced PMWS. This raises the possibility that torque teno viruses in swine may contribute to disease expression currently associated with only a single infectious agent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The propensity of canine distemper virus (CDV) to spread to the central nervous system is one of the primary features of distemper. Therefore, we developed a reverse genetics system based on the neurovirulent Snyder Hill (SH) strain of CDV (CDV(SH)) and show that this virus rapidly circumvents the blood-brain and blood-cerebrospinal fluid (CSF) barriers to spread into the subarachnoid space to induce dramatic viral meningoencephalitis. The use of recombinant CDV(SH) (rCDV(SH)) expressing enhanced green fluorescent protein (EGFP) or red fluorescent protein (dTomato) facilitated the sensitive pathological assessment of routes of virus spread in vivo. Infection of ferrets with these viruses led to the full spectrum of clinical signs typically associated with distemper in dogs during a rapid, fatal disease course of approximately 2 weeks. Comparison with the ferret-adapted CDV(5804P) and the prototypic wild-type CDV(R252) showed that hematogenous infection of the choroid plexus is not a significant route of virus spread into the CSF. Instead, viral spread into the subarachnoid space in rCDV(SH)-infected animals was triggered by infection of vascular endothelial cells and the hematogenous spread of virus-infected leukocytes from meningeal blood vessels into the subarachnoid space. This resulted in widespread infection of cells of the pia and arachnoid mater of the leptomeninges over large areas of the cerebral hemispheres. The ability to sensitively assess the in vivo spread of a neurovirulent strain of CDV provides a novel model system to study the mechanisms of virus spread into the CSF and the pathogenesis of acute viral meningitis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A comparison of the clinicopathology of European bat lyssavirus (EBLV) types-1 and -2 and of rabies virus was undertaken. Following inoculation of mice at a peripheral site with these viruses, clinical signs of rabies and distribution of virus antigen in the mouse brain were examined. The appearance of clinical signs of disease varied both within and across the different virus species, with variation in incubation periods and weight loss throughout disease progression. The distribution of viral antigen throughout the regions of the brain examined was similar for each of the isolates during the different stages of disease progression, suggesting that antigen distribution was not associated with clinical presentation. However, specific regions of the brain including the cerebellum, caudal medulla, hypothalamus and thalamus, showed notable differences in the proportion of virus antigen positive cells present in comparison to other brain regions suggesting that these areas are important in disease development irrespective of virus species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hepatocellular carcinoma (HCC) has a high mortality in East Asia and Sub-Saharan Africa, two regions where the main etiologic factors are chronic infections with hepatitis B vir-us and dietary exposure to aflatoxin. A single base substitution at the third nucleotide of codon 249 of TP53 (R249S) is common in HCC in these regions and has been associated with aflatoxin-DNA adducts. To determine whether R249S may be detected in plasma DNA before HCC diagnosis, we conducted a case-control study nested in a cohort of adult chronic hepatitis B virus carriers from Qidong County, People's Republic of China. Of the 234 plasma specimens that yielded adequate DNA, only 2 (0.9%) were positive for R249S by restriction fragment length polymorphisms, and both of them were controls. Of the 249 subjects tested for aflatoxin-albumin adducts, 168 (67%) were positive, with equal distribution between cases and controls. Aflatoxin-albumin adduct levels were low in the study, suggesting an overall low ongoing exposure to aflatoxin in this cohort. The R249S mutation was detected in 11 of 18 (61%) available tumor tissues. To assess whether low levels of mutant DNA were detectable in pre-diagnosis plasma, 14 plasma specimens from these patients were analyzed by short oligonucleotide mass analysis. Nine of them (64%) were found to be positive. Overall, these results suggest that HCC containing R249S can occur in the absence of significant recent exposure to aflatoxins. The use of short oligonucleotide mass analysis in the context of low ongoing aflatoxin exposure may allow the detection of R249S in plasma several months ahead of clinical diagnosis. (Cancer Epidemiol Biomarkers Prev 2009;18(5):1638-43)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High rates of hepatocellular carcinoma (HCC) in The Gambia, West Africa, are primarily due to a high prevalence of chronic hepatitis B virus infection and heavy aflatoxin exposure via groundnut consumption. We investigated genetic polymorphisms in carcinogen-metabolizing (GSTM1, GSTT1, HYL1*2) and DNA repair (XRCC1) enzymes in a hospital-based case-control study. Incident HCC cases (n = 216) were compared with frequency-matched controls (n = 408) with no clinically apparent liver disease. Although the prevalence of variant genotypes was generally low, in multivariable analysis (adjusting for demographic factors, hepatitis B virus, hepatitis C virus, and TP53 status), the GSTM1-null genotype [odds ratio (OR), 2.45; 95% confidence interval (95% CI), 1.21-4.95] and the heterozygote XRCC1-399 AG genotype (OR, 3.18; 95% CI, 1.35-7.51) were significantly associated with HCC. A weak association of the HYL1*2 polymorphism with HCC was observed but did not reach statistical significance. GSTT1 was not associated with HCC. The risk for HCC with null GSTM1 was most prominent among those with the highest groundnut consumption (OR, 4.67; 95% CI, 1.45-15.1) and was not evident among those with less than the mean groundnut intake (OR, 0.64; 95% Cl, 0.20-2.02). Among participants who had all three suspected aflatoxin-related high-risk genotypes [GSTM1 null, HLY1*2 (HY/HH), and XRCC1 (AG/GG)], a significant 15-fold increased risk of HCC was observed albeit with imprecise estimates (OR, 14.7; 95% CI, 1.27-169). Our findings suggest that genetic modulation of carcinogen metabolism and DNA repair can alter susceptibility to HCC and that these effects may be modified by environmental factors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Small numbers of brain endothelial cells (BECs) are infected in children with neurologic complications of measles virus (MV) infection. This may provide a mechanism for virus entry into the central nervous system, but the mechanisms are unclear. Both in vitro culture systems and animal models are required to elucidate events in the endothelium. We compared the ability of wild-type (WT), vaccine, and rodent-adapted MV strains to infect, replicate, and induce apoptosis in human and murine brain endothelial cells (HBECs and MBECs, respectively). Mice also were infected intracerebrally. All MV stains productively infected HBECs and induced the MV receptor PVRL4. Efficient WT MV production also occurred in MBECs. Extensive monolayer destruction associated with activated caspase 3 staining was observed in HBECs and MBECs, most markedly with WT MV. Tumor necrosis factor–related apoptosis-inducing ligand (TRAIL), but not Fas ligand, was induced by MV infection. Treatment of MBECs with supernatants from MV-infected MBEC cultures with an anti-TRAIL antibody blocked caspase 3 expression and monolayer destruction. TRAIL was also expressed in the endothelium and other cell types in infected murine brains. This is the first demonstration that infection of low numbers of BECs with WT MV allows efficient virus production, induction of TRAIL, and subsequent widespread apoptosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Virus infection-induced global protein synthesis suppression is linked to assembly of stress granules (SGs), cytosolic aggregates of stalled translation preinitiation complexes. To study long-term stress responses, we developed an imaging approach for extended observation and analysis of SG dynamics during persistent hepatitis C virus (HCV) infection. In combination with type 1 interferon, HCV infection induces highly dynamic assembly/disassembly of cytoplasmic SGs, concomitant with phases of active and stalled translation, delayed cell division, and prolonged cell survival. Double-stranded RNA (dsRNA), independent of viral replication, is sufficient to trigger these oscillations. Translation initiation factor eIF2a phosphorylation by protein kinase R mediates SG formation and translation arrest. This is antagonized by the upregulation of GADD34, the regulatory subunit of protein phosphatase 1 dephosphorylating eIF2a. Stress response oscillation is a general mechanism to prevent long-lasting translation repression and a conserved host cell reaction to multiple RNA viruses, which HCV may exploit to establish persistence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The potential of a microparticulate vaccine delivery system in eliciting a specific mucosal antibody response in the respiratory tract of mice was evaluated. Two vaccine candidate peptides representing epitopes from the G attachment and F fusion antigens from bovine respiratory syncytial virus (BRSV) were encapsulated into poly(dl- lactide co-glycolide) biodegradable microparticles. The encapsulation process did not denature the entrapped peptides as verified by detection of peptide-specific antibodies in mucosal secretions by ELISA using peptide as antigen. Following intranasal immunisation, the encapsulated peptides induced stronger upper and lower respiratory tract specific-IgA responses, respectively, than the soluble peptide forms. Moreover, a strong peptide-specific cell-mediated immune response was measured in splenocytes in vitro from the mice inoculated with the encapsulated peptides compared to their soluble form alone indicating that migration of primed T cells had taken place from the site of mucosal stimulation in the upper respiratory tract to the spleen. These results act as a foundation for vaccine efficacy studies in large animal BRSV challenge models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A quantitative duplex time-resolved fluorescence assay, dissociation-enhanced lanthanide fluorescent immunoassay (DELFIA), was developed to measure Norwalk virus (NV)-specific IgA and IgG antibodies simultaneously. The duplex assay showed superior performance by detecting seroconversion following experimental NV infection at an earlier time point than a reference total immunoglobulin enzyme-linked immunosorbent assay (ELISA).