218 resultados para mixing cost
Resumo:
Continuing achievements in hardware technology are bringing ubiquitous computing closer to reality. The notion of a connected, interactive and autonomous environment is common to all sensor networks, biosystems and radio frequency identification (RFID) devices, and the emergence of significant deployments and sophisticated applications can be expected. However, as more information is collected and transmitted, security issues will become vital for such a fully connected environment. In this study the authors consider adding security features to low-cost devices such as RFID tags. In particular, the authors consider the implementation of a digital signature architecture that can be used for device authentication, to prevent tag cloning, and for data authentication to prevent transmission forgery. The scheme is built around the signature variant of the cryptoGPS identification scheme and the SHA-1 hash function. When implemented on 130 nm CMOS the full design uses 7494 gates and consumes 4.72 mu W of power, making it smaller and more power efficient than previous low-cost digital signature designs. The study also presents a low-cost SHA-1 hardware architecture which is the smallest standardised hash function design to date.
Resumo:
It has been suggested (Gribakin et al 1999 Aust. J. Phys. 52 443–57, Flambaum et al 2002 Phys. Rev. A 66 012713) that strongly enhanced low-energy electron recombination observed in Au25+ (Hoffknecht et al 1998 J. Phys. B: At. Mol. Opt. Phys. 31 2415–28) is mediated by complex multiply excited states, while simple dielectronic excitations play the role of doorway states for the electron capture process. We present the results of an extensive study of con?guration mixing between doubly excited (doorway) states and multiply excited states which account for the large electron recombination rate on Au25+ . A detailed analysis of spectral statistics and statistics of eigenstate components shows that the dielectronic doorway states are virtually ‘dissolved’ in complicated chaotic multiply excited eigenstates. This work provides a justi?cation for the use of statistical theory to calculate the recombination rates of Au25+ and similar complex multiply charged ions. We also investigate approaches which allow one to study complex chaotic many-body eigenstates and criteria of strong con?guration mixing, without diagonalizing large Hamiltonian matrices.
Resumo:
In the perceived hierarchy of research designs, the results from randomized controlled trials are considered to provide the highest level of evidence. Indeed these trials have been upheld as the gold standard in research. The benefits and limitations of the randomized controlled trial as a method of evaluating the effectiveness of healthcare interventions are presented. The article then examines the different levels of complexity within healthcare interventions and the problems this poses in determining effectiveness. In an effort to provide a solution to this problem, the Medical Research Council produced a framework to assist investigators to develop and evaluate complex healthcare interventions. The framework is described with reference to an example of implementing and evaluating protocols for weaning patients in the intensive care unit. The framework is critiqued on the basis that it involves an ambiguous or contradictory ontology, which fails to articulate the relationship between the positivism of randomized controlled trials with the relativism of qualitative approaches. It is concluded that the use of realist strategies in combination with randomized controlled trials provides the most coherent solution to this quandary
Resumo:
In this paper, we propose the return-to-cost-ratio (RCR) as an alternative approach to the analysis of operational eco-efficiency of companies based on the notion of opportunity costs. RCR helps to overcome two fundamental deficits of existing approaches to eco-efficiency. (1) It translates eco-efficiency into managerial terms by applying the well-established notion of opportunity costs to eco-efficiency analysis. (2) RCR allows to identify and quantify the drivers behind changes in corporate eco-efficiency. RCR is applied to the analysis of the CO2-efficiency of German companies in order to illustrate its usefulness for a detailed analysis of changes in corporate eco-efficiency as well as for the development of effective environmental strategies. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Mode-mixing of coherent excitations of a trapped Bose-Einstein condensate is modeled using the Bogoliubov approximation. Calculations are presented for second-harmonic generation between the two lowest-lying even-parity m=0 modes in an oblate spheroidal trap. Hybridization of the modes of the breather (l=0) and surface (l=4) states leads to the formation of a Bogoliubov dark state near phase-matching resonance so that a single mode is coherently populated. Efficient harmonic generation requires a strong coupling rate, sharply-defined and well-separated frequency spectrum, and good phase matching. We find that in all three respects the quantal results are significantly different from hydrodynamic predictions. Typically the second-harmonic conversion rate is half that given by an equivalent hydrodynamic estimate.
Resumo:
For many years Northern Ireland has been a divided society where members of the two main religious groups, Catholics and Protestants, have limited opportunities to interact due to segregation in their social lives. Attempts have been made to encourage religious mixing through integration in schools, housing and workplaces predicated on the theory that bringing people together can improve community relations and remove prejudices – known as the ‘contact hypothesis’. However, little is known about those who enter into mixed-religion partnerships often against the wishes of their families and communities. This paper examines the characteristics and attitudes of mixed-religion couples and suggests that they differ in their socio-demographic characteristics and in their attitudes from those who marry within their own religion. These findings add to the weight of evidence from other countries in conflict suggesting that intermarriage has a role to play in contributing to less sectarian views and improved community relations.
Resumo:
We calculate the chemical evolution of protoplanetary disks considering radial viscous accretion, vertical turbulent mixing, and vertical disk winds. We study the effects on the disk chemical structure when different models for the formation of molecular hydrogen on dust grains are adopted. Our gas-phase chemistry is extracted from the UMIST Database for Astrochemistry (Rate06) to which we have added detailed gas-grain interactions. We use our chemical model results to generate synthetic near- and mid-infrared local thermodynamic equilibrium line emission spectra and compare these with recent Spitzer observations. Our results show that if H2 formation on warm grains is taken into consideration, the H2O and OH abundances in the disk surface increase significantly. We find that the radial accretion flow strongly influences the molecular abundances, with those in the cold midplane layers particularly affected. On the other hand, we show that diffusive turbulent mixing affects the disk chemistry in the warm molecular layers, influencing the line emission from the disk and subsequently improving agreement with observations. We find that NH3, CH3OH, C2H2, and sulfur-containing species are greatly enhanced by the inclusion of turbulent mixing. We demonstrate that disk winds potentially affect the disk chemistry and the resulting molecular line emission in a manner similar to that found when mixing is included.