289 resultados para Testicular Neoplasms
Resumo:
Emerging evidence demonstrates that RUNX3 is a tumor suppressor in breast cancer. Inactivation of RUNX3 in mice results in spontaneous mammary gland tumors, and decreased or silenced expression of RUNX3 is frequently found in breast cancer cell lines and human breast cancer samples. However, the underlying mechanism for initiating RUNX3 inactivation in breast cancer remains elusive. Here, we identify prolyl isomerase Pin1, which is often overexpressed in breast cancer, as a key regulator of RUNX3 inactivation. In human breast cancer cell lines and breast cancer samples, expression of Pin1 inversely correlates with the expression of RUNX3. In addition, Pin1 recognizes four phosphorylated Ser/Thr-Pro motifs in RUNX3 via its WW domain. Binding of Pin1 to RUNX3 suppresses the transcriptional activity of RUNX3. Furthermore, Pin1 reduces the cellular levels of RUNX3 in an isomerase activity-dependent manner by inducing the ubiquitination and proteasomal degradation of RUNX3. Knocking down Pin1 enhances the cellular levels and transcriptional activity of RUNX3 by inhibiting the ubiquitination and degradation of RUNX3. Our results identify Pin1 as a new regulator of RUNX3 inactivation in breast cancer.
Resumo:
Understanding migration of cells has many implications in human physiology; some examples include developmental biology, healing, immune responses and tissue remodeling. On the other hand, invasive migration by tumor cells is pathological and is a major cause of mortality amongst cancer sufferers. Cell migration assays have been widely used to quantify potentially metastatic genes. In recent years, the use of RNAi has significantly increased the tools available in cell migration research due to its specific gene targeting for knockdown. The inability to ensure 100% transfection/transduction efficiency reduces the sensitivity of cell migration assays because cells not successfully transfected/transduced with the RNAi are also included in the calculations. This study introduces a different experimental setup mathematically expressed in our named normalized relative infected cell count (N-RICC) that analyses cell migration assays by co-expressing retrovirally transduced shRNA with fluorescence tags from a single vector. Vectors transduced into cells are visible under fluorescence, thus alleviating the problems involved with transduction efficiency by individually identifying cells with targeted genes. Designed shRNAs were targeted against a list of potentially metastatic genes in a highly migratory breast cancer cell line model, MDA-MB-231. We have successfully applied N-RICC analysis to show greater sensitivity of integrin alpha5 (ITGA5) and Ras homologue A (RhoA) in cell metastasis over conventional methods in scratch-wound assays and migration chambers assays.
Resumo:
Metastasis accounts largely for the high mortality rate of colorectal cancer (CRC) patients. In this study, we performed comparative proteome analysis of primary CRC cell lines HCT-116 and its metastatic derivative E1 using 2-D DIGE. We identified 74 differentially expressed proteins, many of which function in transcription, translation, angiogenesis signal transduction, or cytoskeletal remodeling pathways, which are indispensable cellular processes involved in the metastatic cascade. Among these proteins, stathmin-1 (STMN1) was found to be highly up-regulated in E1 as compared to HCT-116 and was thus selected for further functional studies. Our results showed that perturbations in STMN1 levels resulted in significant changes in cell migration, invasion, adhesion, and colony formation. We further showed that the differential expression of STMN1 correlated with the cells' metastatic potential in other paradigms of CRC models. Using immunohistochemistry, we also showed that STMN1 was highly expressed in colorectal primary tumors and metastatic tissues as compared to the adjacent normal colorectal tissues. Furthermore, we also showed via tissue microarray analyses of 324 CRC tissues and Kaplan-Meier survival plot that CRC patients with higher expression of STMN1 have poorer prognosis.
Resumo:
Gastric cancer is a leading cause of cancer-related mortality, and chemotherapeutic options are currently limited. PIM1 kinase, an oncogene that promotes tumorigenesis in several cancer types, might represent a novel therapeutic target in gastric cancer.
Resumo:
Ovarian cancer is a leading cause of gynaecological cancer-related morbidity and mortality. There has been increasing interest in the potential utility of anti-human epidermal growth factor receptor 2 (anti-HER2) agents in the treatment of this disease, with the attendant need to identify suitable predictive biomarkers of response to treatment.
Resumo:
Several randomized phase III studies in advanced stage non-small cell lung cancer (NSCLC) confirmed the superior response rate and progression-free survival of using epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor as first-line therapy compared with chemotherapy in patients with activating EGFR mutations. Despite the need for EGFR mutation tests to guide first-line therapy in East Asian NSCLC, there are no current standard clinical and testing protocols.
Resumo:
Gastric carcinogenesis has been well documented in the step-wise histopathological model, known as Correa pathway. Several biomarkers including CD44, Musashi-1 and CD133 have been reported as putative stem cell (PSC) markers.
Resumo:
Understanding the molecular etiology of cancer and increasing the number of drugs and their targets are critical to cancer management. In our attempt to unravel novel breast-cancer associated proteins, we previously conducted protein expression profiling of the MCF10AT model, which comprises a series of isogenic cell lines that mimic different stages of breast cancer progression. NRD1 expression was found to increase during breast cancer progression. Here, we attempted to confirm the relevance of NRD1 in clinical breast cancer and understand the functional role and mechanism of NRD1 in breast cancer cells. Immunohistochemistry data show that NRD1 expression was elevated in ductal carcinoma in situ and invasive ductal carcinomas compared with normal tissues in 30% of the 26 matched cases studied. Examination of NRD1 expression in tissue microarray comprising >100 carcinomas and subsequent correlation with clinical data revealed that NRD1 expression was significantly associated with tumor size, grade, and nodal status (P <0.05). Silencing of NRD1 reduced MCF10CA1h and MDA-MD-231 breast-cancer-cell proliferation and growth. Probing the oncogenic EGF signaling pathways revealed that NRD1 knock down did not affect overall downstream tyrosine phosphorylation cascades including AKT and MAPK activation. Instead, silencing of NRD1 resulted in a reduction of overall cyclin D1 expression, a reduction of EGF-induced increase in cyclin D1 expression and an increase in apoptotic cell population compared with control cells.
Resumo:
Determination of HER2 protein expression by immunohistochemistry (IHC) and genomic status by fluorescent in situ hybridisation (FISH) are important in identifying a subset of high HER2-expressing gastric cancers that might respond to trastuzumab. Although FISH is considered the standard for determination of HER2 genomic status, brightfield ISH is being increasingly recognised as a viable alternative. Also, the impact of HER2 protein expression/genomic heterogeneity on the accuracy of HER2 testing has not been well studied in the context of gastric biopsy samples.
Resumo:
A downstream target of the Wnt pathway, neurone glial-related cell adhesion molecule (Nr-CAM) has recently been implicated in human cancer development. However, its role in colorectal cancer (CRC) pathobiology and clinical relevance remains unknown. In this study, we examined the clinical significance of Nr-CAM protein expression in a retrospective series of 428 CRCs using immunohistochemistry and tissue microarrays. Cox proportional hazards regression was used to calculate hazard ratios (HR) of mortality according to various clinicopathological features and molecular markers. All CRC samples were immunoreactive for Nr-CAM protein expression, compared to 10 / 245 (4%) matched normal tissue (P <0.0001). Of 428 CRC samples, 97 (23%) showed Nr-CAM overexpression, which was significantly associated with nodal (P = 0.012) and distant (P = 0.039) metastasis, but not with extent of local invasion or tumor size. Additionally, Nr-CAM overexpression was associated with vascular invasion (P = 0.0029), p53 expression (P = 0.036), and peritoneal metastasis at diagnosis (P = 0.013). In a multivariate model adjusted for other clinicopathological predictors of survival, Nr-CAM overexpression correlated with a significant increase in disease-specific (HR 1.66; 95% confidence interval 1.11-2.47; P = 0.014) and overall mortality (HR 1.57; 95% confidence interval 1.07-2.30; P = 0.023) in advanced but not early stage disease. Notably, 5-fluorouracil-based chemotherapy conferred significant survival benefit to patients with tumors negative for Nr-CAM overexpression but not to those with Nr-CAM overexpressed tumors. In conclusion, Nr-CAM protein expression is upregulated in CRC tissues. Nr-CAM overexpression is an independent marker of poor prognosis among advanced CRC patients, and is a possible predictive marker for non-beneficence to 5-fluorouracil- based chemotherapy.
Resumo:
Transcription factor RUNX3 is inactivated in a number of malignancies, including breast cancer, and is suggested to function as a tumor suppressor. How RUNX3 functions as a tumor suppressor in breast cancer remains undefined. Here, we show that about 20% of female Runx3(+/-) mice spontaneously developed ductal carcinoma at an average age of 14.5 months. Additionally, RUNX3 inhibits the estrogen-dependent proliferation and transformation potential of ERa-positive MCF-7 breast cancer cells in liquid culture and in soft agar and suppresses the tumorigenicity of MCF-7 cells in severe combined immunodeficiency mice. Furthermore, RUNX3 inhibits ERa-dependent transactivation by reducing the stability of ERa. Consistent with its ability to regulate the levels of ERa, expression of RUNX3 inversely correlates with the expression of ERa in breast cancer cell lines, human breast cancer tissues and Runx3(+/-) mouse mammary tumors. By destabilizing ERa, RUNX3 acts as a novel tumor suppressor in breast cancer.
Resumo:
Secretory factors that drive cancer progression are attractive immunotherapeutic targets. We used a whole-genome data-mining approach on multiple cohorts of breast tumours annotated for clinical outcomes to discover such factors. We identified Serine protease inhibitor Kazal-type 1 (SPINK1) to be associated with poor survival in estrogen receptor-positive (ER+) cases. Immunohistochemistry showed that SPINK1 was absent in normal breast, present in early and advanced tumours, and its expression correlated with poor survival in ER+ tumours. In ER- cases, the prognostic effect did not reach statistical significance. Forced expression and/or exposure to recombinant SPINK1 induced invasiveness without affecting cell proliferation. However, down-regulation of SPINK1 resulted in cell death. Further, SPINK1 overexpressing cells were resistant to drug-induced apoptosis due to reduced caspase-3 levels and high expression of Bcl2 and phospho-Bcl2 proteins. Intriguingly, these anti-apoptotic effects of SPINK1 were abrogated by mutations of its protease inhibition domain. Thus, SPINK1 affects multiple aggressive properties in breast cancer: survival, invasiveness and chemoresistance. Because SPINK1 effects are abrogated by neutralizing antibodies, we suggest that SPINK1 is a viable potential therapeutic target in breast cancer.