153 resultados para Somatostatin analogues
Resumo:
The enteroinsular axis (EIA) constitutes a physiological signalling system whereby intestinal endocrine cells secrete incretin hormones following feeding that potentiate insulin secretion and contribute to the regulation of blood glucose homeostasis. The two key hormones responsible are named glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP). Recent years have witnessed sustained development of antidiabetic therapies that exploit the EIA. Current clinical compounds divide neatly into two classes. One concerns analogues or mimetics of GLP-1, such as exenatide (Byetta) or liraglutide (NN2211). The other group comprises the gliptins (e. g. sitagliptin and vildagliptin) which boost endogenous incretin activity by inhibiting the enzyme dipeptidyl peptidase 4 (DPP 4) that degrades both GLP-1 and GIP. Ongoing research indicates that further incretin and gliptin compounds will become available for clinical use in the near future, offering comparable or improved efficacy. For incretin analogues there is the prospect of prolonged duration of action and alternative routes of administration. This review focuses on recent advances in pre-clinical research and their translation into clinical studies to provide future therapies for type 2 diabetes targeting the EIA.
Resumo:
Background. Vitamin D and its analogues are reported to have renoprotective effects in chronic kidney disease including diabetic nephropathy (DN). Vitamin D3 is converted to 1,25(OH) D3 by CYP2R1 and CYP27B1. The biological action of 1,25(OH) D3 is mediated via its receptor. VDR, CYP27B1 or CYP2R1 gene variants could modify the biological activity of vitamin D3. We have conducted the first case- control association study to determine the relationship between polymorphisms in VDR, CYP27B1 and CYP2R1 genes, and the risk of DN in individuals with type 1 diabetes.
Resumo:
An octadecapeptide was isolated from the skin secretions of the dusky gopher frog (Rana sevosa) on the basis of histamine release from rat peritoneal mast cells. This peptide was purified to homogeneity by HPLC and found to have the following primary structure, YLKGCWTKSYPPKPCFSR, using both Edman degradation chemistry and peptide sequencing using high-resolution mass spectrometry (Q-TOF MS). The peptide, named peptide Tyrosine Arginine (pYR) shares 77.8% homology with peptide Leucine Arginine (pLR). The effects of the natural amidated peptide, non-amidated peptide and C-loop region of pYR on granulopoiesis and neutrophil apoptosis were investigated. All three analogues inhibited the early development of granulocyte macrophage colonies from bone marrow stem cells but did not induce apoptosis of the end stage granulocytes, the mature neutrophil. Thus, pYR is a novel member of an important and emerging new class of amphibian peptides with hemopoietic actions. (c) 2004 Elsevier Inc. All rights reserved.
Resumo:
A central paradox of vitamin D biology is that 1alpha,25-(OH)(2) D(3) exposure inversely relates to colorectal cancer (CRC) risk despite a capacity for activation of both pro- and anti-oncogenic mediators including osteopontin (OPN)/CD44 and E-cadherin, respectively. Most sporadic CRCs arise from adenomatous polyposis coli (APC) gene mutation but understanding of its effects on vitamin D growth control is limited. Here we investigate effects of the Apc(Min/+) genotype on 1alpha,25-(OH)(2) D(3) regulation of OPN/CD44/E-cadherin signalling and intestinal tumourigenesis, in vivo. In untreated Apc(Min/+) versus Apc(+/+) intestines, expression levels of OPN and its CD44 receptor were increased, whereas E-cadherin tumour suppressor signalling was attenuated. Treatment by 1alpha,25-(OH)(2) D(3) or rationally designed analogues (QW or BTW) enhanced OPN but inhibited expression of CD44, the OPN receptor implicated in cell growth. These treatments also enhanced E-cadherin tumour suppressor activity, characterized by inhibition of beta-catenin nuclear localization, T-cell factor 1 and c-myelocytomatosis protein expression in Apc(Min/+) intestine. All secosteroids suppressed Apc(Min/+)-driven tumourigenesis although QW and BTW had lower calcium-related toxicity. Taken together, these data indicate that the Apc(Min/+) genotype modulates vitamin D secosteroid actions to promote functional predominance of E-cadherin tumour suppressor activity within antagonistic molecular networks. APC heterozygosity may promote favourable tissue- or tumour-specific conditions for growth control by vitamin D secosteroid treatment.
Resumo:
Madagascan frogs of the mantellid genus Mantella have been a rich source of alkaloids derived from dietary arthropods. Two species of frogs, inhabiting swamp forest, contain a unique set of alkaloids, previously proposed, based only on GC-MS and GC-FTIR data, to represent dehydro analogues of the homopumiliotoxins. The major alkaloid of this set, alkaloid 235C (2), now has been isolated in sufficient quantities (ca. 0.3 mg) to allow determination of the structure by NMR analysis. The structure of alkaloid 235C proved to be a 7,8-dehydro-8-desmethylpumiliotoxin. A comparison is presented between the mass, infrared, and H-1 NMR spectra of 235C (2) and a synthetic dehydrohomopumiliotoxin (1), initially proposed incorrectly as the structure for 235C.
Resumo:
Resonance Raman spectra of the T-1 excited states of Zn and free-base tetra-4-sulfonatophenylporphyrin (TPPS) have been recorded at room temperature in aqueous solution using two-colour time-resolved methods. The spectra of both sulfonated molecules are very similar to their tetraphenylporphyrin (TPP) analogues, which have been recorded in THF solution using the same pump-probe conditions, but they have higher signal-to-noise ratios because interference from strong solvent bands is reduced. Although two different T-1 spectra of Zn(TPP) have been reported these spectra differ slightly from each other and from the spectrum reported here, which has band positions very close (+/-6 cm(-1)) to those of Zn(TPPS). The high S/N ratios obtainable for the water-soluble porphyrins have allowed reliable polarization data to be recorded for their S-0 and T-1 states. This data set allows a realistic comparison of the changes in bonding associated with excitation of both free-base and Zn tetraarylporphyrins to the T-1 state.
Resumo:
Neotropical orchid bees (Euglossini) are conspicuously different from other corbiculate bees (Apinae) in their lack of advanced sociality and in male use of acquired odors (fragrances) as pheromone-analogues. In both contexts, orchid bee mating systems, in particular the number of males a female mates with, are of great interest but are currently unknown. To assess female mating frequency in the genus Euglossa, we obtained nests from three species in Mexico and Panama and genotyped mothers and their brood at microsatellite DNA loci. In 26 out of 29 nests, genotypes of female brood were fully consistent with being descended from a singly mated mother. In nests with more than one adult female present, those adult females were frequently related, with genotypes being consistent with full sister-sister (r = 0.75) or mother-daughter (r = 0.5) relationships. Thus, our genetic data support the notions of female philopatry and nest-reuse in the genus Euglossa. Theoretically, single mating should promote the evolution of eusociality by maximizing the relatedness among individuals in a nest. However, in Euglossini this genetic incentive has not led to the formation of eusocial colonies as in other corbiculate bees, presumably due to differing ecological or physiological selective regimes. Finally, monandry in orchid bees is in agreement with the theory that females select a single best mate based on the male fragrance phenotype, which may contain information on male age, cognitive ability, and competitive strength.
Resumo:
This review examines the developments in optical biosensor technology, which uses the phenomenon of surface plasmon resonance, for the detection of paralytic shellfish poisoning (PSP) toxins. Optical biosensor technology measures the competitive biomolecular interaction of a specific biological recognition element or binder with a target toxin immobilised onto a sensor chip surface against toxin in a sample. Different binders such as receptors and antibodies previously employed in functional and immunological assays have been assessed. Highlighted are the difficulties in detecting this range of low molecular weight toxins, with analogues differing at four chemical substitution sites, using a single binder. The complications that arise with the toxicity factors of each toxin relative to the parent compound, saxitoxin, for the measurement of total toxicity relative to the mouse bioassay are also considered. For antibodies, the cross-reactivity profile does not always correlate to toxic potency, but rather to the toxin structure to which it was produced. Restrictions and availability of the toxins makes alternative chemical strategies for the synthesis of protein conjugate derivatives for antibody production a difficult task. However, when two antibodies with different cross-reactivity profiles are employed, with a toxin chip surface generic to both antibodies, it was demonstrated that the cross-reactivity profile of each could be combined into a single-assay format. Difficulties with receptors for optical biosensor analysis of low molecular weight compounds are discussed, as are the potential of alternative non-antibody-based binders for future assay development in this area.
Resumo:
Amphibian skin secretions are, for the most part, complex peptidomes. While many peptide components have been biologically- and structurally-characterised into discrete "families", some of which are analogues of endogenous vertebrate regulatory peptides, a substantial number are of unique structure and unknown function. Among the components of these secretory peptidomes is an array of protease inhibitors. Inhibitors of trypsin are of widespread occurrence in different taxa and are representative of many established structural classes, including Kunitz, Kazal and Bowman-Birk. However, few protease inhibitors with activity against other specific proteases have been described from this source. Here we report for the first time, the isolation and structural characterisation of an inhibitor of chymotrypsin of Kunitz-type from the skin secretion of the African hyperoliid frog, Kassina senegalensis. To this end, we employed a functional peptidomic approach. This scheme involves fractionation of the peptidome, functional end-point screening, structural characterisation of resultant actives followed by molecular cloning of biosynthetic precursor-encoding cDNA(s). The novel mature and active polypeptide identified consisted of 62 amino acid residues (average molecular mass 6776.24 Da), of which 6 were positionally-conserved cysteines. The P(1) position within the active site was occupied by a phenylalanyl residue. Bioinformatic analysis of the sequence using BLAST, revealed a structural similarity to Kunitz-type chymotrypsin inhibitors from other organisms, ranging from silkworms to snakes.
Resumo:
A novel, inducible, carbon-phosphorus bond-cleavage enzyme, phosphonoacetate hydrolase, was purified from cells of Pseudomonas fluorescens 23F grown phosphonoacetate. The native enzyme had a molecular mass of approximately 80 kDa and, upon SDS/PAGE, yielded a homogenous protein band with an apparent molecular mass of about 38 kDa. Activity of purified phosphonoacetate hydrolase was Zn2+ dependent and showed pH and temperature optima of approximately 7.8 and 37 degrees C, respectively. The purified enzyme had an apparent K-m of 1.25 mM for its sole substrate phosphonoacetate, and was inhibited by the structural analogues 3-phosphonopropionate and phosphonoformate. The NH2-terminal sequence of the first 19 amino acids displayed no significant similarity to other databank sequences.
Resumo:
PF4 has previously been shown to have potent inhibitory effects on myoactivity of somatic muscle strips from the nematode, Ascaris suum. This study examined the bioactivity and metabolic stability of position 2- and position 5-modified analogues of PF4. Although the analogues [Leu(5)] PF4, [Ala(2)]PF4, [Gly(2)]PF4, [Ala(2),Leu(5)]PF4, and [Gly(2),Leu(5)]PF4 all had qualitatively similar inhibitory effects on A. suum somatic muscle strips, their effects were quantitatively distinguishable and had the order of potency: PF4 = [Leu(5)] PF4 >> [Ala(2)]PF4 = [Ala(2),Leu(5)] PF4 >> [Gly(2)] PF4 = [Gly(2),Leu(5)] PF4. Leu(5) for Ile(5) substitutions in PF4 did not alter the activity of this peptide; however, Gly(2)/Ala(2) for Pro(2) substitutions reduced, but did not abolish, peptide activity. Peptide stability studies revealed that [Gly(2)]PF4(2-7) and -(3-7) and [Ala(2)]PF4(2-7), -(3-7), and -(4-7) fragments were generated following exposure to A. suum somatic muscle strips. However, the parent peptide (PF4) was not metabolized and appeared to be resistant to the sequential cleavages of native aminopeptidases. Observed analogue metabolism appeared to be due to the activity of released aminopeptidases as identical fragments were generated by incubation in medium that had been exposed to somatic muscle strips and from which the strips had been removed prior to peptide addition. It was found that the muscle stretching and bath mixing characteristics of the tension assay led to more effective release of soluble enzymes from muscle strips and thus greater peptide degradation. These studies reveal that Pro(2) in PF4 is not essential for the biological activity of this peptide; however, it does render the peptide resistant to the actions of native nematode aminopeptidases. Copyright (C) 1996 Elsevier Science Inc.
Resumo:
Mast cell activation by polycationic substances is believed to result from a direct activation of G protein alpha subunits and it was suggested that the adaption of amphipathic, alpha-helical conformations would allow the peptide to reach the cytosolic compartment to interact with G proteins (Mousli et al., 1994, Immunopharmacology 27, 1, for review). We investigated the histamine-releasing activity of model peptides as well as analogues of magainin 2 amide and neuropeptide Y with different amphipathicities and alpha-helix content on rat peritoneal mast cells. Amphipathic helicity is not a prerequisite for mast cell activation. Moreover, non-helical magainin peptides with high histamine-releasing activity were less active in the liberation of carboxyfluoresceine from negatively charged liposomes, indicating that peptide-induced mast cell activation and peptide-induced membrane perturbation do not correlate. In contrast to the negligible influence of the secondary structure, amino acid configuration may exert a striking influence on peptide-induced mast cell activation. Thus histamine-release by substance P was markedly impaired when the L-amino acids in the positively charged N-terminal region were replaced by D-amino acids, with [D-Arg(1)]substance P being the most inactive substance P diastereoisomer.
Resumo:
Chicken pancreatic polypeptide is the prototype of the neuropeptide Y (NPY)/PP superfamily of regulatory peptides. This polypeptide was appended the descriptive term avian, despite the presence of some 8600 extant species of bird. Additional primary structures from other avian species, including turkey, goose and ostrich, would suggest that the primary structure of this polypeptide has been highly-conserved during avian evolution. Avian pancreatic polypeptides structurally-characterised to date have distinctive primary structural features unique to this vertebrate group including an N-terminal glycyl residue and a histidyl residue at position 34. The crow family, Corvidae, is representative of the order Passeriformes, generally regarded as the most evolutionarily recent and diverse avian taxon. Pancreatic polypeptide has been isolated from pancreatic tissues from five representative Eurasian species (the magpie, Pica pica; the jay, Garrulus glandarius; the hooded crow, Corvus corone; the rook, Corvus frugilegus; the jackdaw, Corvus monedula) and subjected to structural analyses. Mass spectroscopy estimated the molecular mass of each peptide as 4166 +/- 2 Da. The entire primary structures of 36 amino acid residue peptides were established in single gas-phase sequencing runs. The primary structures of pancreatic polypeptides from all species investigated were identical: APAQPAYPGDDAPVEDLLR-FYNDLQQYLNVVTRPRY. The peptides were deemed to be amidated due to their full molar cross-reactivity with the amide-requiring PP antiserum employed. The molecular mass (4165.6 Da), calculated from the sequences, was in close agreement with mass spectroscopy estimates. The presence of an N-terminal alanyl residue and a prolyl residue at position 34 differentiates crow PP from counterparts in other avian species. These residues are analogous to those found in most mammalian analogues. These data suggest that the term avian, appended to the chicken peptide, is no longer tenable due to the presence of an Ala1, Pro34 peptide in five species from the largest avian order. These data might also suggest that, in keeping with the known structure/activity requirements of this peptide family, crow PP should interact identically to mammalian analogues on mammalian receptors.
Resumo:
Immunocytochemical techniques used in conjunction with confocal scanning laser microscopy (CSLM) and electron microscopy have been used to demonstrate, for the first time, the distribution of the parasitic platyhelminth neuropeptide, neuropeptide F (NPF) in the cestode, Moniezia expansa. Antisera were raised to intact NPF(1-39) and to the C-terminal decapeptide of NPF(30-39). These antisera were characterized and validated for use in both immunocytochemistry and radioimmunoassay (RIA). NPF immunoreactivity (IR) was detected using both antisera throughout all of the major components of the central and peripheral nervous systems of the worm. The pattern of NPF-IR was found to mirror the IR obtained using a C-terminally directed pancreatic polypeptide (PP) antiserum and FMRFamide antisera; blocking studies using these antisera revealed that FMRFamide and PP antisera cross-react with NPF(M. expansa). RIA of acid-alcohol extracts of the worm measured 114 ng/g using the C-terminal NPF antiserum and 56 ng/g using the whole-molecule-directed antiserum. While the C-terminally-directed NPF antiserum cross-reacts with NPF-related peptides from other invertebrates, the whole-molecule-directed NPF antiserum is specific for NPF(M. expansa). The C-terminal NPF antiserum has potential for use in the identification and purification of NPF analogues from other platyhelminth parasites.
Resumo:
Pancreatic polypeptide (PP) has been isolated from extracts of the pancreas of the European hedgehog (Erinaceous europaeus) which is a representative of the order Insectivora, deemed to be the most primitive group of placental mammals. Pancreatic tissues were extracted in acidified ethanol and the peptide was purified chromatographically using a PP C-terminal hexapeptide amide specific radioimmunoassay to monitor purification. Two major PP-immunoreactive peptides were baseline-resolved following the final analytical reverse phase HPLC fractionation. Each was separately subjected to plasma desorption mass spectroscopy (PDMS) and gas-phase sequencing. The molecular masses of each peptide were similar: (I) 4237.6 +/- 4 Da and (II) 4238.2 +/- 4 Da. The full primary structures of each peptide were deduced and these were identical: VPLEPVYPGDNATPEQMAHYAAELRRYINMLTRPRY. The peptides were deemed to be amidated due to their full molar cross-reactivity with the amide-requiring PP antiserum employed in radioimmunoassay. The molecular mass (4233.8 Da) calculated from the sequence was in close agreemeent with PDMS estimates and the reason for the different retention times of each peptide is unknown at present. Hedgehog PP exhibits only 2 unique amino acid substitutions, at positions 1 (Val) and 19 (His), when compared with other mammalian analogues.