148 resultados para Simple diets
Resumo:
An increasing number of publications on the dried blood spot (DBS) sampling approach for the quantification of drugs and metabolites have been spurred on by the inherent advantages of this sampling technique. In the present research, a selective and sensitive high-performance liquid chromatography method for the concurrent determination of multiple antiepileptic drugs (AEDs) [levetiracetam (LVT), lamotrigine (LTG), phenobarbital (PHB)], carbamazepine (CBZ) and its active metabolite carbamazepine-10,11 epoxide (CBZE)] in a single DBS has been developed and validated. Whole blood was spotted onto Guthrie cards and dried. Using a standard punch (6. mm diameter), a circular disc was punched from the card and extracted with methanol: acetonitrile (3:1, v/v) containing hexobarbital (Internal Standard) and sonicated prior to evaporation. The extract was then dissolved in water and vortex mixed before undergoing solid phase extraction using HLB cartridges. Chromatographic separation of the AEDs was achieved using Waters XBridge™ C18 column with a gradient system. The developed method was linear over the concentration ranges studied with r=0.995 for all compounds. The lower limits of quantification (LLOQs) were 2, 1, 2, 0.5 and 1. µg/mL for LVT, LTG, PHB, CBZE and CBZ, respectively. Accuracy (%RE) and precision (%CV) values for within and between day were
Resumo:
Electron deficient active sites in Pd catalysts, either as films or on supports, are deliberately generated by calcining in O-2 at high temperature followed by the mildest possible reduction (with the reaction mixture itself), and are manifested by a marked shift from multiple to simple exchange in the cyclopentane/D-2 probe reaction.
Resumo:
In this study, we describe a simple and efficient method for on-chip storage of reagents for point-of-care (POC) diagnostics. The method is based on gelification of all reagents required for on-chip PCR-based diagnostics as a ready-to-use product. The result reported here is a key step towards the development of a ready and easy to use fully integrated Lab-on-a-chip (LOC) system for fast, cost-effective and efficient POC diagnostics analysis.
Resumo:
Sympathetic and parasympathetic divisions of the autonomic nervous system constantly control the heart (sympathetic and parasympathetic divisions) and blood vessels (predominantly the sympathetic division) to maintain appropriate blood pressure and organ blood flow over sometimes widely varying conditions. This can be adversely affected by pathological conditions that can damage one or both branches of autonomic control. The set of teaching laboratory activities outlined here uses various interventions, namely, 1) the heart rate response to deep breathing, 2) the heart rate response to a Valsalva maneuver, 3) the heart rate response to standing, and 4) the blood pressure response to standing, that cause fairly predictable disturbances in cardiovascular parameters in normal circumstances, which serve to demonstrate the dynamic control of the cardiovascular system by autonomic nerves. These tests are also used clinically to help investigate potential damage to this control.
Resumo:
We report a simple and facile methodology for constructing Pt (6.3 mm x 50 mu m) and Cu (6.3 mm x 30 mu m) annular microband electrodes for use in room temperature ionic liquids (RTILs) and propose their use for amperometric gas sensing. The suitability of microband electrodes for use in electrochemical analysis was examined in experiments on two systems. The first system studied to validate the electrochemical responses of the annular microband electrode was decamethylferrocene (DmFc), as a stable internal reference probe commonly used in ionic liquids, in [Pmim][NTf2], where the diffusion coefficients of DmFc and DmFc(+) and the standard electron rate constant for the DmFc/DmFc(+) couple were determined through fitting chronoamperometric and cyclic voltammetric responses with relevant simulations. These values are independently compared with those collected from a commercially available Pt microdisc electrode with excellent agreement. The second system focuses on O-2 reduction in [Pmim][NTf2], which is used as a model for gas sensing. The diffusion coefficients of O-2 and O-2(-) and the electron transfer rate constant were again obtained using chronoamperometry and cyclic voltammetry, along with simulations. Results determined from the microbands are again consistent to those evaluated from the Pt microdisc electrode when compared these results from home-made microband and commercially available microdisc electrodes. These observations indicate that the fabricated annular microband electrodes are suitable for quantitative measurements. Further the successful use of the Cu electrodes in the O-2 system suggests a cheap disposable sensor for gas detection. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Approximately 20 per cent of quasi-stellar objects (QSOs) exhibit broad, blue-shifted absorption lines in their ultraviolet spectra. Such features provide clear evidence for significant outflows from these systems, most likely in the form of accretion disc winds. These winds may represent the ‘quasar’ mode of feedback that is often invoked in galaxy formation/evolution models, and they are also key to unification scenarios for active galactic nuclei (AGN) and QSOs. To test these ideas, we construct a simple benchmark model of an equatorial, biconical accretion disc wind in a QSO and use a Monte Carlo ionization/radiative transfer code to calculate the ultraviolet spectra as a function of viewing angle. We find that for plausible outflow parameters, sightlines looking directly into the wind cone do produce broad, blue-shifted absorption features in the transitions typically seen in broad absorption line (BAL) QSOs. However, our benchmark model is intrinsically X-ray weak in order to prevent overionization of the outflow, and the wind does not yet produce collisionally excited line emission at the level observed in non-BAL QSOs. As a first step towards addressing these shortcomings, we discuss the sensitivity of our results to changes in the assumed X-ray luminosity and mass-loss rate, Ṁwind. In the context of our adopted geometry, Ṁwind ∼ Ṁacc is required in order to produce significant BAL features. The kinetic luminosity and momentum carried by such outflows would be sufficient to provide significant feedback.
Resumo:
This article describes an extremely simple wireless transceiver, comprising of only a low Q VCO and a phase locked loop IC. It is experimentally shown to, simultaneously, transmit an 8-dBm CW interrogation signal, while concurrently demodulating a phase modulated received signal with sensitivity levels of -120 dBm. This makes the performance similar to conventional transceivers, which require complex superheterodyne type architectures and also require a means to provide a high isolation separate the transmit/receive signals (such as a circulator).
Resumo:
Oyster® is a surface-piercing flap-type device designed to harvest wave energy in the nearshore environment. Established mathematical theories of wave energy conversion, such as 3D point-absorber and 2D terminator theory, are inadequate to accurately describe the behaviour of Oyster, historically resulting in distorted conclusions regarding the potential of such a concept to harness the power of ocean waves. Accurately reproducing the dynamics of Oyster requires the introduction of a new reference mathematical model, the “flap-type absorber”. A flap-type absorber is a large thin device which extracts energy by pitching about a horizontal axis parallel to the ocean bottom. This paper unravels the mathematics of Oyster as a flap-type absorber. The main goals of this work are to provide a simple–yet accurate–physical interpretation of the laws governing the mechanism of wave power absorption by Oyster and to emphasise why some other, more established, mathematical theories cannot be expected to accurately describe its behaviour.
Resumo:
We investigate the basic behavior and performance of simulated quantum annealing (QA) in comparison with classical annealing (CA). Three simple one-dimensional case study systems are considered: namely, a parabolic well, a double well, and a curved washboard. The time-dependent Schrodinger evolution in either real or imaginary time describing QA is contrasted with the Fokker-Planck evolution of CA. The asymptotic decrease of excess energy with annealing time is studied in each case, and the reasons for differences are examined and discussed. The Huse-Fisher classical power law of double-well CA is replaced with a different power law in QA. The multiwell washboard problem studied in CA by Shinomoto and Kabashima and leading classically to a logarithmic annealing even in the absence of disorder turns to a power-law behavior when annealed with QA. The crucial role of disorder and localization is briefly discussed.
Resumo:
Quantitative monitoring of a mechanochemical reaction by Raman spectroscopy leads to a surprisingly straightforward second-order kinetic model in which the rate is determined simply by the frequency of reactive collisions between reactant particles.