167 resultados para SHEARS MECHANISM


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have performed density functional theory (DFT) calculations to investigate the reaction mechanism of the cleavage of the carbonyl bond in amides on both flat and stepped Ru surfaces. The simplest amide molecule, N,N-dimethylacetamide (DMA), was used as the exemplar model molecule. Through the calculations, the most stable transition states (TSs) in all the pathways on both flat and stepped Ru surfaces are identified. Comparing the energy profiles of different reaction pathways, we find that a direct cleavage mechanism is always energetically favored as compared with an alternative hydrogen-induced mechanism on either the flat or stepped Ru surface. It is easier for the dissociation process to occur on the stepped surface than on the flat surface. However, as compared with the terrace, the superiority of step sites boosting the C-O bond dissociation is not as evident as that on CO dissociation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of spillover processes on the activity of a catalyst system consisting of a mixed oxygen ion and electronic conducting support La0.6Sr0.4Co0.2Fe0.8O3d and a metal catalyst (Pt) were investigated. Two types of model single-pellet catalysts were used employing Pt deposited on both sides of a dense LSCF disc pellet. One of these single pellets employed highly disperse, physically non-continuous Pt, in contrast to studies on electrochemical promotion, while the other used a low dispersion continuous film. Driving forces for promoter migration were controlled through the manipulation of the oxygen chemical potential difference across the membrane. Catalyst rate modification was observed in all cases. However, it was found that there is a complex relationship between the rate modification, the driving forces for spillover and the geometrical arrangement of the catalyst on the support (i.e. catalyst dispersion).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A mechanism of CO oxidation by a thin surface oxide of Rh supported on ceria is proposed: CO is oxidized by the Rh-oxide film, which is subsequently reoxidized by a ceria surface O atom. The proposed mechanism is supported by in situ Raman spectroscopic investigations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

On-stream deactivation during a water gas shift (WGS) reaction over gold supported on a ceria-zirconia catalyst was examined. Although the fresh catalyst has very high low temperature (<200 degrees C) for WGS activity, a significant loss of CO conversion is found under steady-state operations over hours. This has been shown to be directly related to the concentration of water in the gas phase. The same catalyst also undergoes thermal deactivation above 250 degrees C, and using a combined experimental and theoretical approach, a common deactivation mechanism is proposed. In both cases, the gold nanoparticles, which are found under reaction conditions, are thought to detach from the oxide support either through hydrolysis, <200 degrees C, or thermally, > 200 degrees C. This process reduces the metal-support interaction, which is considered to be critical in determining the high activity of the catalyst.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A mechanism of dual enlargement of gold nanoparticles (AuNPs) comprising two steps is described. In the first step, the AuNPs are enlarged by depositing Au atoms on their crystalline faces. In this process, the particles are not only enlarged but they are also observed to multiply: new Au nuclei are formed by the budding and division of the enlarged particles. In the second step, a silver enhancement is subsequently performed by the deposition of silver atoms on the enlarged and newly formed AuNPs to generate bimetallic Au@Ag core-shell structures. The dual nanocatalysis greatly enhances the electron density of the nanostructures, leading to a stronger intensity for colorimetric discrimination as well as better sensitivity for quantitative measurement. Based on this, a simple scanometric assay for the on-slide detection of the food-born pathogen Campylobacter jejuni is developed. After capturing the target bacteria, gold-tagged immunoprobes are added to create a signal on a solid substrate. The signal is then amplified by the dual enlargement process, resulting in a strong color intensity that can easily be recognized by the unaided eye, or measured by an inexpensive flatbed scanner. In this paper, dual nanocatalysis is reported for the first time. It provides a valuable mechanistic insight into the development of a simple and cost-effective detection format.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

GHMP kinases are a group of structurally-related small molecule kinases. They have been found in all kingdoms of life and are mostly responsible for catalysing the ATP-dependent phosphorylation of intermediary metabolites. Although the GHMP kinases are of clinical, pharmaceutical and biotechnological importance, the mechanism of GHMP-kinases is controversial. A catalytic base mechanism was suggested for mevalonate kinase that has a structural feature of the ?-phosphate of ATP close to an aspartate residue; however, for one GHMP member, homoserine kinase, where the residue acting as general base is absent, a direct phosphorylation mechanism was suggested. Furthermore, it has been proposed by some authors that all the GHMP kinases function via the direct phosphorylation mechanism. This controversy in mechanism has limited our ability to exploit these enzymes as drug targets and in biotechnology. Here the phosphorylation reaction mechanism of the human galactokinase, a member of GHMP kinase was investigated using molecular dynamics simulations and density functional theory-based QM/MM calculations (B3LYP-D/AMBER99). The reaction coordinates were localized by potential energy scan using adiabatic mapping method. Our results indicate that a highly conserved Glu174 captures Arg105 to the proximity of the a-phosphate of ATP forming a H-bond network, therefore the mobility of ATP in the large oxyanion hole is restricted. Arg228 functions to stabilize the negative charge developed at the ß,?-bridging oxygen of the ATP during bond cleavage. The reaction occurs via direct phosphorylation mechanism and the Asp186 in proximity of ATP does not directly participate in the reaction pathway. Since Arg228 is not conserved among GHMP kinases, reagents which form interactions with Arg228, and therefore can interrupt its function in phosphorylation may be developed into potential selective inhibitors for galactokinase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An inverse CeO2/CuO catalyst has been investigated by operando steady-state isotopic transient kinetic analysis (SSITKA) in combination with diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) under 3% CO +3% H2O reactant mixture at 473 K with the aim of determining intermediates involved in the water gas shift reaction at relatively low temperatures. Among the various species detected in the infrared spectra which may be involved in the reaction, i.e. formates, copper carbonyls and carbonates, a particular type of carbonate species is identified as a reaction intermediate on the basis of detailed analysis of the spectra during isotopic exchange in comparison with the change in the corresponding isotopically labelled CO2 product. 

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Absolute photodetachment cross sections of two anions of astrophysical importance CN- and C3N- were measured to be (1.18 +- (0.03)_stat (0.17)_sys) * 10^-17 cm^2 and (1.43 +- (0.14)_stat (0.37)_sys) * 10^-17 cm^2 respectively at the ultraviolet wavelength of 266 nm (4.66 eV). These relatively large values of the cross sections imply that photodetachment can play a major role in the destruction mechanisms of these anions particularly in photon-dominated regions. We have therefore carried out model calculations using the newly measured cross sections to investigate the abundance of these molecular anions in the cirumstellar envelope of the carbon-rich star IRC+10216. The model predicts the relative importance of the various mechanisms of formation and destruction of these species in different regions of the envelope. UV photodetachment was found to be the major destruction mechanism for both CN- and C3N- anions in those regions of the envelope, where they occur in peak abundance. It was also found that photodetachment plays a crucial role in the degradation of these anions throughout the circumstellar envelope.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Whilst data recognise both myeloid cell accumulation during choroidal neovascularisation (CNV) as well as complement activation, none of the data has presented a clear explanation for the angiogenic drive that promotes pathological angiogenesis. One possibility that is a pre-eminent drive is a specific and early conditioning and activation of the myeloid cell infiltrate. Using a laser-induced CNV murine model, we have identified that disruption of retinal pigment epithelium (RPE) and Bruch's membrane resulted in an early recruitment of macrophages derived from monocytes and microglia, prior to angiogenesis and contemporaneous with lesional complement activation. Early recruited CD11b(+) cells expressed a definitive gene signature of selective inflammatory mediators particularly a pronounced Arg-1 expression. Accumulating macrophages from retina and peripheral blood were activated at the site of injury, displaying enhanced VEGF expression, and notably prior to exaggerated VEGF expression from RPE, or earliest stages of angiogenesis. All of these initial events, including distinct VEGF (+) Arg-1(+) myeloid cells, subsided when CNV was established and at the time RPE-VEGF expression was maximal. Depletion of inflammatory CCR2-positive monocytes confirmed origin of infiltrating monocyte Arg-1 expression, as following depletion Arg-1 signal was lost and CNV suppressed. Furthermore, our in vitro data supported a myeloid cell uptake of damaged RPE or its derivatives as a mechanism generating VEGF (+) Arg-1(+) phenotype in vivo. Our results reveal a potential early driver initiating angiogenesis via myeloid-derived VEGF drive following uptake of damaged RPE and deliver an explanation of why CNV develops during any of the stages of macular degeneration and can be explored further for therapeutic gain.