117 resultados para PHARMACEUTICAL PREPARATIONS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ophthalmic drug delivery system is very interesting and challenging due to the normal physiologically factor of eyes which reduces the bioavailability of ocular products. The development of a new ophthalmic dosage forms with the existing drugs to improve efficacy and bioavailability including better patients' compliance and convenience has become trend in the most pharmaceutical industries. The present review encompasses various conventional and novel ocular drug delivery systems, methods of preparation, characterization, recent researches carried out. Furthermore, the information on various commercially available in situ gel preparations and the existing patents of in situ drug delivery systems i.e. in situ gel formation of pectin, in situ gel for therapeutic use, medical uses of in situ formed gels and in situ gelling systems as sustained delivery for front of eye also covered in this review.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Slow release drugs must be manufactured to meet target specifications with respect to dissolution curve profiles. In this paper we consider the problem of identifying the drivers of dissolution curve variability of a drug from historical manufacturing data. Several data sources are considered: raw material parameters, coating data, loss on drying and pellet size statistics. The methodology employed is to develop predictive models using LASSO, a powerful machine learning algorithm for regression with high-dimensional datasets. LASSO provides sparse solutions facilitating the identification of the most important causes of variability in the drug fabrication process. The proposed methodology is illustrated using manufacturing data for a slow release drug.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a novel strategy for the prevention of ventilator-associatedpneumonia that involves coating poly(vinyl chloride, PVC) endotracheal tubes (ET) withhydrogels that may be subsequently used to entrap nebulized antimicrobial solutions. Candidatehydrogels were prepared containing a range of ratios of hydroxyethyl methacrylate (HEMA) andmethacrylic acid (MAA) from 100:0 to 70:30 using free radical polymerization and, whenrequired, simultaneous attachment to PVC was performed. The mechanical properties, glasstransition temperatures, swelling kinetics, uptake of gentamicin from an aqueous medium, andgentamicin release were characterized. Increasing the MAA content of the hydrogels significantlydecreased the ultimate tensile strength, % elongation at break, Young’s modulus, and increasedthe glass transition temperature, the swelling ratio, and gentamicin uptake. Microbial(Staphylococcus aureus and Pseudomonas aeruginosa) adherence to control (drug-free) hydrogelswas observed; however, while adherence to gentamicin-containing p(HEMA) occurred, noadherence occurred to gentamicin-containing HEMA:MAA copolymers. Antimicrobialpersistence of gentamicin-containing hydrogels was examined by determining the zone ofinhibition against each microorganism on successive days. Hydrogel composition affected the observed antimicrobial persistence,with the hydrogel composed of 70:30 HEMA:MAA exhibiting >20 days persistence against S. aureus and P. aeruginosa,respectively. To simulate clinical use, the hydrogels (coated onto PVC) were first exposed to a nebulized solution of gentamicin(4 mL, 80 mg for 20 min), and then to nebulized bacteria (4 mL ca. 1 × 109 colony forming units mL−1, 30 min). Viable bacteriawere not observed on the gentamicin-treated p(HEMA: MAA) copolymers, whereas growth was observed on gentamicin-treatedp(HEMA). In light of the excellent antimicrobial activity and physicochemical properties, p(HEMA: MAA) copolymerscomposed of ratios of 80:20 or 70:30 HEMA: MAA were identified as potentially useful coatings of endotracheal tubes to be usedin conjunction with the clinical nebulization of gentamicin and designed for the prevention of ventilator-associated pneumonia

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Given the growing interest in thermal processing methods, this study describes the use of an advanced rheological technique, capillary rheometry, to accurately determine the thermorheological properties of two pharmaceutical polymers, Eudragit E100 (E100) and hydroxypropylcellulose JF (HPC) and their blends, both in the presence and absence of a model therapeutic agent (quinine, as the base and hydrochloride salt). Furthermore, the glass transition temperatures (Tg) of the cooled extrudates produced using capillary rheometry were characterised using Dynamic Mechanical Thermal Analysis (DMTA) thereby enabling correlations to be drawn between the information derived from capillary rheometry and the glass transition properties of the extrudates. The shear viscosities of E100 and HPC (and their blends) decreased as functions of increasing temperature and shear rates, with the shear viscosity of E100 being significantly greater than that of HPC at all temperatures and shear rates. All platforms were readily processed at shear rates relevant to extrusion (approximately 200–300 s−1) and injection moulding (approximately 900 s−1). Quinine base was observed to lower the shear viscosities of E100 and E100/HPC blends during processing and the Tg of extrudates, indicative of plasticisation at processing temperatures and when cooled (i.e. in the solid state). Quinine hydrochloride (20% w/w) increased the shear viscosities of E100 and HPC and their blends during processing and did not affect the Tg of the parent polymer. However, the shear viscosities of these systems were not prohibitive to processing at shear rates relevant to extrusion and injection moulding. As the ratio of E100:HPC increased within the polymer blends the effects of quinine base on the lowering of both shear viscosity and Tg of the polymer blends increased, reflecting the greater solubility of quinine within E100. In conclusion, this study has highlighted the importance of capillary rheometry in identifying processing conditions, polymer miscibility and plasticisation phenomena.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A highly sensitive and specific competitive ELISA on 96-microwell plates was developed for the analysis of the nonsteroidal anti-inflammatory drug diclofenac. Within the water cycle in Europe, this is one of the most frequently detected pharmaceutically active compounds. The LOD at a signal-tonoise ratio (S/N) of 3, and the IC 50, were found to be 6 ng/L and 60 ng/L respectively in tap water. In a comparative study using ELISA and GC-MS, diclofenac levels in wastewater from 21 sewage treatment plants were determined and a good correlation between these methods was found (ELISA vs. GCMS: r = 0.70, slope = 0,90, intercept = 0.37, n = 24). An average degradation rate of -25% can be calculated. Labscale-experiments on the elimination of diclofenac in continuous pilot sewage plants revealed a removal rate of only 5% over a period of 13 weeks. In a further study, the ELISA was applied to a number of extracts of various animal tissues from a range of species, and again a very good relationship between ELISA and LC-ESI/MS data sets was obtained (r = 0.90, p<0.0001; n = 117). The ELISA has proven to be a simple, rapid, reliable and affordable alternative to otherwise costly and advanced techniques for the detection of diclofenac in matrix diverse water samples and tissue extracts after only relatively simple sample preparation. © 2007 American Chemical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates the effects of polyethylene glycol (PEG), on the mechanical and thermal properties of nalidixic acid/ploy ε-caprolactone (NA)/PCL blends prepared by hot melt extrusion. The blends were characterized by tensile and flexural analysis, dynamic mechanical analysis, differential scanning calorimetry, thermogravimetric analysis and X-ray diffraction. Experimental data indicated that the addition of NA caused loss of the tensile strength and toughness of PCL. Thermal analysis of the PCL showed that on addition of the thermally unstable NA, thermal degradation occurred early and was autocatalytic. However, the NA did benefit from the heat shielding provided by the PCL matrix resulting in more thermally stable NA particles. Results show that loading PEG in the PCL had a detrimental effect on the tensile strength and toughness of the blends, reducing them by 20-40%. The partial miscibility of the PCL-PEG system, causes an increase in Tg. While increases in the crystallinity is attributed to the plasticisation effect of PEG and the nucleation effect of NA. The average crystal size increased by 8% upon PEG addition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper focuses on the issue of polypharmacy in older people and potential pharmaceutical strategies to optimize the use of multiple medicines. Although polypharmacy has long been viewed negatively, increasing emphasis is being placed on the difference between appropriate and inappropriate polypharmacy. This is largely being driven by the increasing prevalence of multimorbidity and the use of evidence-based guidelines. In this paper, we outline a number of key considerations that are pertinent to optimizing polypharmacy, notably prescribing appropriate polypharmacy, pharmaceutical formulations, the involvement of older people in clinical trials and patient adherence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Engineered cocrystals offer an alternative solid drug form with tailored physicochemical properties. Interestingly, although cocrystals provide many new possibilities, they also present new challenges, particularly in regard to their design and large-scale manufacture. Current literature has primarily focused on the preparation and characterization of novel cocrystals typically containing only the drug and coformer, leaving the subsequent formulation less explored. In this paper we propose, for the first time, the use of hot melt extrusion for the mechanochemical synthesis of pharmaceutical cocrystals in the presence of a meltable binder. In this approach, we examine excipients that are amenable to hot melt extrusion, forming a suspension of cocrystal particulates embedded in a pharmaceutical matrix. Using ibuprofen and isonicotinamide as a model cocrystal reagent pair, formulations extruded with a small molecular matrix carrier (xylitol) were examined to be intimate mixtures wherein the newly formed cocrystal particulates were physically suspended in a matrix. With respect to formulations extruded using polymeric carriers (Soluplus and Eudragit EPO, respectively), however, there was no evidence within PXRD patterns of either crystalline ibuprofen or the cocrystal. Importantly, it was established in this study that an appropriate carrier for a cocrystal reagent pair during HME processing should satisfy certain criteria including limited interaction with parent reagents and cocrystal product, processing temperature sufficiently lower than the onset of cocrystal Tm, low melt viscosity, and rapid solidification upon cooling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peptides are receiving increasing interest as clinical therapeutics. These highly tunable molecules can be tailored to biocompatibility and biodegradability with simultaneously selective and potent therapeutic effects. Despite challenges regarding up-scaling and licensing of peptide products, their vast clinical potential is reflected in the 60 plus peptide-based therapeutics already on the market, and the further 500 derivatives currently in developmental stages. Peptides are proving effective for a multitude of disease states including: type 2 diabetes (controlled using the licensed glucagon-like peptide-1 receptor liraglutide); irritable bowel syndrome managed with linaclotide (currently at approval stages); acromegaly (treated with octapeptide somostatin analogues lanreotide and octreotide); selective or broad spectrum microbicidal agents such as the Gram-positive selective PTP-7 and antifungal heliomicin; anticancer agents including goserelin used as either adjuvant or for prostate and breast cancer,and the first marketed peptide derived vaccine against prostate cancer, sipuleucel-T. Research is also focusing on improving the biostability of peptides. This is achieved through a number of mechanisms ranging from replacement of naturally occurring L-amino acid enantiomers with D-amino acid forms, lipidation, peptidomimetics, N-methylation, cyclization and exploitation of carrier systems. The development of self-assembling peptides are paving the way for sustained release peptide formulations and already two such licensed examples exist, lanreotide and octreotide. The versatility and tunability of peptide-based products is resulting in increased translation of peptide therapies, however significant challenges remain with regard to their wider implementation. This review highlights some of the notable peptide therapeutics discovered to date and the difficulties encountered by the pharmaceutica lindustry in translating these molecules to the clinical setting for patient benefit, providing some possible solutions to the most challenging barriers.