281 resultados para Osteoporosis - Diet therapy
Resumo:
Background: Periodontal therapy coupled with active maintenance has been shown to be effective in maintaining periodontal health, however, the question of re-treatment is rarely alluded to in the literature.
Resumo:
BACKGROUND AIMS: Cell-based gene therapy is an alternative to viral and non-viral gene therapy. Emerging evidence suggests that mesenchymal stem cells (MSC) are able to migrate to sites of tissue injury and have immunosuppressive properties that may be useful in targeted gene therapy for sustained specific tissue engraftment. METHODS: In this study, we injected intravenously (i.v.) 1x10(6) MSC, isolated from green fluorescent protein (GFP) transgenic rats, into Rif-1 fibrosarcoma-bearing C3H/HeN mice. The MSC had been infected using a lentiviral vector to express stably the luciferase reporter gene (MSC-GFP-luci). An in vivo imaging system (IVIS 200) and Western blotting techniques were used to detect the distribution of MSC-GFP-luci in tumor-bearing animals. RESULTS: We observed that xenogenic MSC selectively migrated to the tumor site, proliferated and expressed the exogenous gene in subcutaneous fibrosarcoma transplants. No MSC distribution was detected in other organs, such as the liver, spleen, colon and kidney. We further showed that the FGF2/FGFR pathways may play a role in the directional movement of MSC to the Rif-1 fibrosarcoma. We performed in vitro co-culture and in vivo tumor growth analysis, showing that MSC did not affect the proliferation of Rif-1 cells and fibrosarcoma growth compared with an untreated control group. Finally, we demonstrated that the xenogenic MSC stably expressing inducible nitric oxide synthase (iNOS) protein transferred by a lentivirus-based system had a significant inhibitory effect on the growth of Rif-1 tumors compared with MSC alone and the non-treatment control group. CONCLUSIONS: iNOS delivered by genetically modified iNOS-MSC showed a significant anti-tumor effect both in vitro and in vivo. MSC may be used as a target gene delivery vehicle for the treatment of fibrosarcoma and other tumors
Resumo:
The HSP90 chaperone and immunophilin FKBPL is an estrogen-responsive gene that interacts with estogen receptor a (ERa) and regulates its levels. In this study, we explored the effects of FKBPL on breast cancer proliferation. Breast cancer cells stably overexpressing FKBPL became dependent on estrogen for their growth and were dramatically more sensitive to the antiestrogens tamoxifen and fulvestrant, whereas FKBPL knockdown reverses this phenotype. FKBPL knockdown also decreased the levels of the cell cycle inhibitor p21WAF1 and increased ERa phosphorylation on Ser118 in response to 17ß-estradiol and tamoxifen. In support of the likelihood that these effects explained FKBPL-mediated cell growth inhibition and sensitivity to endocrine therapies, FKBPL expression was correlated with increased overall survival and distant metastasis-free survival in breast cancer patients. Our findings suggest that FKBPL may have prognostic value based on its impact on tumor proliferative capacity and sensitivity to endocrine therapies, which improve outcome.