148 resultados para Modified ink mileage
Resumo:
Compared with normal low density lipoprotein (N-LDL), LDL minimally modified in vitro by glycation, minimal oxidation, or glycoxidation (G-, MO-, GO-LDL) decreases survival of cultured retinal capillary endothelial cells and pericytes. Similar modifications occurring in vivo in diabetes may contribute to retinopathy. The goal of this study was to determine whether low concentrations of aminoguanidine might prevent cytotoxic modification of LDL and/or protect retinal capillary cells from previously modified LDL.
Resumo:
Glycation and/or oxidation of LDL may promote diabetic nephropathy. The mitogen-activated protein kinase (MAPK) cascade, which includes extracellular signal-regulated protein kinases (ERKs), modulates cell function. Therefore, we examined the effects of LDL on ERK phosphorylation in cultured rat mesangial cells. In cells exposed to 100 microg/ml native LDL or LDL modified by glycation, and/or mild or marked (copper-mediated) oxidation, ERK activation peaked at 5 min. Five minutes of exposure to 10-100 microg/ml native or modified LDL produced a concentration-dependent (up to sevenfold) increase in ERK activity. Also, 10 microg/ml native LDL and mildly modified LDL (glycated and/or mildly oxidized) produced significantly greater ERK activation than that induced by copper-oxidized LDL +/- glycation (P <0.05). Pretreatment of cells with Src kinase and MAPK kinase inhibitors blocked ERK activation by 50-80% (P <0.05). Native and mildly modified LDL, which are recognized by the native LDL receptor, induced a transient spike of intracellular calcium. Copper-oxidized (+/- glycation) LDL, recognized by the scavenger receptor, induced a sustained rise in intracellular calcium. The intracellular calcium chelator (EGTA/AM) further increased ERK activation by native and mildly modified LDL (P <0.05). These findings demonstrate that native and modified LDL activate ERKs 1 and 2, an early mitogenic signal, in mesangial cells and provide evidence for a potential link between modified LDL and the development of glomerular injury in diabetes.
Resumo:
We determined whether pre-enrichment of low density lipoproteins (LDL) with alpha-tocopherol mitigates their adverse effects, following in vitro glycation, oxidation or glycoxidation, towards cultured bovine retinal capillary endothelial cells (RCEC) and pericytes.
Resumo:
To investigate the role of modified low-density lipoproteins (LDL) in the pathogenesis of diabetic retinopathy, we studied the cytotoxicity of normal and mildly modified human LDL to bovine retinal capillary endothelial cells and pericytes in vitro. Pooled LDL was incubated (in phosphate-buffered saline-EDTA, 3 days, 37 degrees C) under 1) nitrogen with additional chelating agents and 2) air, to prepare normal and minimally oxidized LDL, respectively. Similar conditions, but with the addition of 50 mM D-glucose, were used to prepare glycated and glycoxidized LDL. None of the LDL preparations was recognized by the macrophage scavenger receptor, confirming limited modification. Retinal capillary endothelial cells and pericytes were grown to confluence and then exposed for 2 or 3 days to serum-free medium (1% albumin) supplemented with normal or modified LDL (100 mg/l) or to serum-free medium alone. Cytotoxicity was assessed by cell counting (live and total cells) and by cell protein determination. Compared with normal LDL, modified LDL were cytotoxic to both cell types at both time points, causing highly significant decreases in live and total cell counts (P <0.001) (analysis of variance). Reductions in cell protein also were significant for pericytes at day 3 (P = 0.016) and of borderline significance for endothelial cells at day 2 (P = 0.05) and day 3 (P = 0.063). Cytotoxicity increased as follows: normal <glycated <or = minimally oxidized <glycoxidized LDL. We conclude that, in diabetes, mild modification of LDL resulting from separate or combined processes of glycation and oxidation may contribute to chronic retinal capillary injury and thus to the development of diabetic retinopathy.
Resumo:
Modified lipoproteins induce autoimmune responses including the synthesis of autoantibodies with pro-inflammatory characteristics. Circulating modified lipoprotein autoantibodies combine with circulating antigens and form immune complexes (IC). We now report the results of a study investigating the role of circulating IC containing modified lipoproteins in the progression of carotid intima-media thickness (IMT) in patients enrolled in the Epidemiology of Diabetes Interventions and Complications (EDIC) Trial, a follow-up study of the Diabetes Control and Complications Trial (DCCT). This cohort includes 1229 patients with type 1 diabetes in whom B-mode ultrasonography of internal and common carotid arteries was performed in 1994-1996 and in 1998-2000. Conventional CHD risk factors, antibodies against modified forms of LDL and modified lipoprotein IC were determined in 1050 of these patients from blood collected in 1996-1998. Cholesterol and apolipoprotein B content of IC (surrogate markers of modified ApoB-rich lipoproteins) were significantly higher in patients who showed progression of the internal carotid IMT than in those showing no progression, regression or mild progression. Multivariate linear and logistic regression modeling using conventional and non-conventional risk factors showed that the cholesterol content of IC was a significant positive predictor of internal carotid IMT progression. In conclusion these data demonstrate that increased levels of modified ApoB-rich IC are associated with increased progression of internal carotid IMT in the DCCT/EDIC cohort of type 1 diabetes.
Resumo:
The electrochemical deposition of Ru on Pt(111) electrodes has been investigated by electron diffraction, Auger spectroscopy, and cyclic voltammetry in a closed UHV transfer system. At small coverages Ru formed a monatomic commensurate layer, at higher coverage mostly small islands with a bilayer height were detected. When the Pt was almost completely covered by Ru, three-dimensional clusters developed. The island structure of Ru changed upon electrooxidation of CO, reflecting an enhanced mobility of Ru. Adsorption and electrooxidation of CO have been studied on such Ru-modified Pt(111) electrodes using cyclic voltammetry and in situ FTIR spectroscopy. Compared to the pure metals, the Ru-CO bond is weakened, the Pt-CO bond strengthened on the modified electrodes. The catalytic activity of the Ru/Pt(111) electrode toward CO adlayer oxidation is higher than that of pure Ru and a PtRu alloy (50:50). It is concluded that the electrooxidation of CO takes place preferentially at the Ru islands, while CO adsorbed on Pt migrates to them. © 1999 American Chemical Society.
Resumo:
PURPOSE: To assess the effects of advanced glycation endproduct (AGE) modification of vascular basement membrane (BM) on endothelin-1 (Et-1) induced intracellular [Ca2+] ([Ca2+]i) homeostasis and contraction in retinal microvascular pericytes (RMP). METHODS: RMPs were isolated from bovine retinal capillaries and propagated on AGE modified BM extract (AGE-BM) or non-modified native BM. Cytosolic Ca2+ was estimated using fura-2 microfluorimetry and cellular contraction determined by measurement of planimetric cell surface area. ETA receptor mRNA and protein expression was assessed by real time RT-PCR and western blotting, respectively. RESULTS: Exogenous endothelin-1 (Et-1) evoked rises in [Ca2+]i and contraction in RMPs were found to be mediated entirely through ETA receptor (ETAR) activation. Both peak and plateau phases of the Et-1 induced [Ca2+]i response and contraction were impaired in RMPs propagated on AGE modified BM. ETAR mRNA expression remained unchanged in RMPs exposed to native or AGE-BM, but protein expression for ETAR (66 kDa) was lower in the AGE exposed cells. CONCLUSIONS: These results suggest that substrate derived AGE crosslinks can influence RMP physiology by mechanisms which include disruption of ETA receptor signalling. AGE modification of vascular BMs may contribute to the retinal hemodynamic abnormalities observed during diabetes.
Resumo:
AIMS/HYPOTHESIS: Premature death of retinal pericytes is a pathophysiological hallmark of diabetic retinopathy. Among the mechanisms proposed for pericyte death is exposure to AGE, which accumulate during diabetes. The current study used an in vitro model, whereby retinal pericytes were exposed to AGE-modified substrate and the mechanisms underlying pericyte death explored. METHODS: Pericytes were isolated from bovine retinal capillaries and propagated on AGE-modified basement membrane (BM) extract or non-modified native BM. The extent of AGE modification was analysed. Proliferative responses of retinal pericytes propagated on AGE-modified BM were investigated using a 5-bromo-2-deoxy-uridine-based assay. The effect of extrinsically added platelet-derived growth factor (PDGF) isoforms on these proliferative responses was also analysed alongside mRNA expression of the PDGF receptors. Apoptotic death of retinal pericytes grown on AGE-modified BM was investigated using terminal deoxynucleotidyl transferase-mediated dUTP nick end-labelling labelling, mitochondrial membrane depolarisation and by morphological assessment. We also measured both the ability of PDGF to reverse Akt dephosphorylation that was mediated by AGE-modified BM, and increased pericyte apoptosis. RESULTS: Retinal pericytes exposed to AGE-modified BM showed reduced proliferative responses in comparison to controls (p
Resumo:
Carbon composite monoliths were prepared from a commercial phenolic resin mixed with just 1 wt% of carbon nanotubes (CNTs) followed by carbonization and physical activation with CO. The products possess a hierarchical macroporous-microporous structure and superior CO adsorption properties. In particular, they show the top-ranked CO capacity (52 mg CO per g adsorbent at 25 °C and 114 mmHg) under low CO partial pressures, which is of more relevance for flue gas applications. This matches or exceeds those of carbons produced by complex chemical activation and functionalization. Our study demonstrates an effective way to create narrow micropores through structural modification of carbon composites by CNTs. © 2013 The Royal Society of Chemistry.
Resumo:
A new approach for extracting stress intensity factors (SIFs) by the element-free Galerkin (EFG) class of methods through a modified crack closure integral (MCCI) scheme is proposed. Its primary feature is that it allows accurate calculation of mode I and mode II SIFs with a relatively simple and straightforward analysis even when a coarser nodal density is employed. The details of the adoption of the MCCI technique in the EFG method are described. Its performance is demonstrated through a number of case studies including mixed-mode and thermal problems in linear elastic fracture mechanics (LEFM). The results are compared with published theoretical solutions and those based on the displacement method, stress method, crack closure integral in conjunction with local smoothing (CCI–LS) technique, as well as the M-integral method. Its advantages are discussed.
Resumo:
A set of cylindrical porous titanium test samples were produced using the three-dimensional printing and sintering method with samples sintered at 900 °C, 1000 °C, 1100 °C, 1200 °C or 1300 °C. Following compression testing, it was apparent that the stress-strain curves were similar in shape to the curves that represent cellular solids. This is despite a relative density twice as high as what is considered the threshold for defining a cellular solid. As final sintering temperature increased, the compressive behaviour developed from being elastic-brittle to elastic-plastic and while Young's modulus remained fairly constant in the region of 1.5 GPa, there was a corresponding increase in 0.2% proof stress of approximately 40-80 MPa. The cellular solid model consists of two equations that predict Young's modulus and yield or proof stress. By fitting to experimental data and consideration of porous morphology, appropriate changes to the geometry constants allow modification of the current models to predict with better accuracy the behaviour of porous materials with higher relative densities (lower porosity).
Resumo:
A modification to the standard Thomson parabola spectrometer is discussed, which is designed to measure high energy (tens of MeV/nucleon), broad bandwidth spectra of multi-species ions accelerated by intense laser plasma interactions. It is proposed to implement a pair of extended, trapezoidal shaped electric plates, which will not only resolve ion traces at high energies, but will also retain the lower energy part of the spectrum. While a longer (along the axis of the undeflected ion beam direction) electric plate design provides effective charge state separation at the high energy end of the spectrum, the proposed new trapezoidal shape will enable the low energy ions to reach the detector, which would have been clipped or blocked by simply extending the rectangular plates to enhance the electrostatic deflection.