6 resultados para Modified ink mileage
em CaltechTHESIS
Resumo:
The branching theory of solutions of certain nonlinear elliptic partial differential equations is developed, when the nonlinear term is perturbed from unforced to forced. We find families of branching points and the associated nonisolated solutions which emanate from a bifurcation point of the unforced problem. Nontrivial solution branches are constructed which contain the nonisolated solutions, and the branching is exhibited. An iteration procedure is used to establish the existence of these solutions, and a formal perturbation theory is shown to give asymptotically valid results. The stability of the solutions is examined and certain solution branches are shown to consist of minimal positive solutions. Other solution branches which do not contain branching points are also found in a neighborhood of the bifurcation point.
The qualitative features of branching points and their associated nonisolated solutions are used to obtain useful information about buckling of columns and arches. Global stability characteristics for the buckled equilibrium states of imperfect columns and arches are discussed. Asymptotic expansions for the imperfection sensitive buckling load of a column on a nonlinearly elastic foundation are found and rigorously justified.
Resumo:
Redox-active ruthenium complexes have been covalently attached to the surface of a series of natural, semisynthetic and recombinant cytochromes c. The protein derivatives were characterized by a variety of spectroscopic techniques. Distant Fe^(2+) - Ru^(3+) electronic couplings were extracted from intramolecular electron-transfer rates in Ru(bpy)_2(im)HisX (where X= 33, 39, 62, and 72) derivatives of cyt c. The couplings increase according to 62 (0.0060) < 72 (0.057) < 33 (0.097) < 39 (0.11 cm^(-1)); however, this order is incongruent with histidine to heme edge-edge distances [62 (14.8) > 39 (12.3) > 33 (11.1) > =72 (8.4 Å)]. These results suggest the chemical nature of the intervening medium needs to be considered for a more precise evaluation of couplings. The rates (and couplings) correlate with the lengths of a-tunneling pathways comprised of covalent bonds, hydrogen bonds and through-space jumps from the histidines to the heme group. Space jumps greatly decrease couplings: one from Pro71 to Met80 extends the σ-tunneling length of the His72 pathway by roughly 10 covalent bond units. Experimental couplings also correlate well with those calculated using extended Hiickel theory to evaluate the contribution of the intervening protein medium.
Two horse heart cyt c variants incorporating the unnatural amino acids (S)-2- amino-3-(2,2'-bipyrid-6-yl)-propanoic acid (6Bpa) and (S)-2-amino-3-(2,2'-bipyrid-4-yl)propanoic acid ( 4Bpa) at position 72 have been prepared using semisynthetic protocols. Negligible perturbation of the protein structure results from this introduction of unnatural amino acids. Redox-active Ru(2,2'-bipyridine)_2^(2+) binds to 4Bpa72 cyt c but not to the 6Bpa protein. Enhanced ET rates were observed in the Ru(bpy)_2^(2+)-modified 4Bpa72 cyt c relative to the analogous His72 derivative. The rapid (< 60 nanosecond) photogeneration of ferrous Ru-modified 4Bpa72 cyt c in the conformationally altered alkaline state demonstrates that laser-induced ET can be employed to study submicrosecond protein-folding events.
Resumo:
The design of synthetic molecules that recognize specific sequences of DNA is an ongoing challenge in molecular medicine. Cell-permeable small molecules targeting predetermined DNA sequences offer a potential approach for offsetting the abnormal effects of misregulated gene-expression. Over the past twenty years, Professor Peter B. Dervan has developed a set of pairing rules for the rational design of minor groove binding polyamides containing pyrrole (Py), imidazole (Im), and hydroxypyrrole (Hp). Polyamides have illustrated the capability to permeate cells and inhibit transcription of specific genes in vivo. This provides impetus to identify structural elements that expand the repetoire of polyamide motifs with recognition properties comparable to naturally occurring DNA binding proteins. Through the introduction of chiral amino acids, we have developed chiral polyamides with stereochemically regulated binding characteristics. In addition, chiral substituents have facilitated the development of new polyamide motifs that broaden binding site sizes targetable by this class of ligands.
Resumo:
Redox-active probes are designed and prepared for use in DNA-mediated electron transfer studies. These probes consist of ruthenium(II) complexes bound to nucleosides that possess metal-binding ligands. Low- and high-potential oxidants are synthesized from these modified nucleosides and display reversible one-electron electrochemical behavior. The ruthenium-modified nucleosides exhibit distinct charge-transfer transitions in the visible region that resemble those of appropriate model complexes. Resonance Raman and time-resolved emission spectroscopy are used to characterize the nature of these transitions.
The site-specific incorporation of these redox-active probes into oligonucleotides is explored using post-synthetic modification and solid-phase synthetic methods. The preparation of the metal-binding nucleosides, their incorporation into oligonucleotides, and characterization of the resulting oligonucleotides is described. Because the insertion of these probes into modified oligonucleotides using post-synthetic modification is unsuccessful, solid-phase synthetic methods are explored. These efforts lead to the first report of 3'-metallated oligonucleotides prepared completely by automated solid-phase synthesis. Preliminary efforts to prepare a bis-metallated oligonucleotide by automated synthesis are described.
The electrochemical, absorption, and emissive features of the ruthenium-modified oligonucleotides are unchanged from those of the precursor metallonucleoside. The absence of any change in these properties upon incorporation into oligonucleotides and subsequent hybridization suggests that the incorporated ruthenium(II) complex is a valuable probe for DNA-mediated electron transfer studies.
Resumo:
The temperature dependences of the reduction potentials (Eo') of wildtype human myoglobin (Mb) and three site-directed mutants have been measured by using thin-layer spectroelectrochemistry. Residue Val68, which is in van der Waals contact with the heme in Mb, has been replaced by Glu, Asp, and Asn. At pH 7.0, reduction of the heme iron (III) in the former two proteins is accompanied by uptake of a proton by the protein. The changes in Eo', and the standard entropy (ΔSo') and enthalpy (ΔHo') of reduction in the mutant proteins were determined relative to values for wild-type; the change in Eo' at 25°C was about -200 millivolts for the Glu and Asp mutants, and about -80 millivolts for the Asn mutant. Reduction of Fe(III) to Fe(II) in the Glu and Asp mutants is accompanied by uptake of a proton. These studies demonstrate that Mb can tolerate substitution of a buried hydrophobic group by potentially charged and polar residues, and that such amino acid replacements can lead to substantial changes in the redox thermodynamics of the protein.
Through analysis of the temperature dependence and shapes of NMR dispersion signals, it is determined that a water molecule is bound to the sixth coordination site of the ferric heme in the Val68Asp and in the Val68Asn recombinant proteins while the carboxyl group of the sidechain of Glu68 occupies this position in Val68Glu. The relative rhombic distortions in the ESR spectra of these mutant proteins combined with H217O and spin interconversion experiments performed on them confirm the conclusions of the NMRD study.
The rates of intramolecular electron transfer (ET) of (NH3)5Ru-His48 (Val68Asp, His81GIn, Cys110AIa)Mb and (NH3)5Ru-His48 (Val68GIu,His81GIn,Cys110Ala)Mb were measured to be .85(3)s-1 and .30(2)s-1, respectively. This data supports the hypothesis that entropy of 111 reduction and reorganization energy of ET are inversely related. The rates of forward and reverse ET for (NH3)5 Ru-His48 (Val68GIu, His81 GIn, Cys110AIa)ZnMb -7.2(5)•104s-1and 1.4(2)•105s-1, respectively- demonstrate that the placement of a highly polar residue nearby does not significantly change the reorganization energy of the photoactive Zn porphyrin.
The distal histidine imidazoles of (NH3)4isnRu-His48 SWMb and (NH3)5Ru-His48 SWMb were cyanated with BrCN. The intramolecular ET rates of these BrCN-modified Mb derivatives are 5.5(6)s-1 and 3.2(5)s-1, respectively. These respective rates are 20 and 10 times faster than those of their noncyanated counterparts after the differences in ET rate from driving force are scaled according to the Marcus equation. This increase in ET rate of the cyanated Mb derivatives is attributed to lower reorganization energy since the cyanated Mb heme is pentacoordinate in both oxidation states; whereas, the native Mb heme loses a water molecule upon reduction so that it changes from six to five coordinate. The reorganization energy from Fe-OH2 dissociation is estimated to be .2eV. This conclusion is used to reconcile data from previous experiments in our lab. ET in photoactive porphyrin-substituted myoglobins proceed faster than predicted by Marcus Theory when it is assumed that the only difference in ET parameters between photoactive porphyrins and native heme systems is driving force. However, the data can be consistently fit to Marcus Theory if one corrects for the smaller reorganization in the photoactive porphyrin systems since they do not undergo a coordination change upon ET.
Finally, the intramolecular ET rate of (NH3)4isnRu-His48 SWMb was measured to be 3.0(4)s-1. This rate is within experimental error of that for (NH3)4pyrRu-His48 SWMb even though the former has 80mV more driving force. One likely possibility for this observation is that the tetraamminepyridineruthenium group undergoes less reorganization upon ET than the tetraammineisonicotinamideruthenium group. Moreover, analysis of the (NH3)4isnRu-His48 SWMb experimental system gives a likely explanation of why ET was not observed previously in (NH3)4isnRu-Cytochrome C.
Resumo:
The kinetics of the reduction of O2 by Ru(NH3)6+2 as catalyzed by cobalt(II) tetrakis(4-N-methylpyridyl)porphyrin are described both in homogeneous solution and when the reactants are confined to Nafion coatings on graphite electrodes. The catalytic mechanism is determined and the factors that can control the total reduction currents at Nafion-coated electrodes are specified. A kinetic zone diagram for analyzing the behavior of catalyst-mediator-substrate systems at polymer coated electrodes is presented and utilized in identifying the current-limiting processes. Good agreement is demonstrated between calculated and measured reduction currents at rotating disk electrodes. The experimental conditions that will yield the optimum performance of coated electrodes are discussed, and a relationship is derived for the optimal coating thickness.
The relation between the reduction potentials of adsorbed and unadsorbed cobalt(III) tetrakis(4-N-methylpyridyl)porphyrin and those where it catalyzes the electroreduction of dioxygen is described. There is an unusually large change in the formal potential of the Co(III) couple upon the adsorption of the porphyrin on the graphite electrode surface. The mechanism in which the (inevitably) adsorbed porphyrin catalyzes the reduction of O2 is in accord with a general mechanistic scheme proposed for most monomeric cobalt porphyrins.
Four new dimeric metalloporphyrins (prepared in the laboratory of Professor C. K. Chang) have the two porphyrin rings linked by an anthracene bridge attached to meso positions. The electrocatalytic behavior of the diporphyrins towards the reduction of O2 at graphite electrodes has been examined for the following combination of metal centers: Co-Cu, Co-Fe, Fe-Fe, Fe-H2. The Co-Cu diporphyrin catalyzes the reduction of O2 to H2O2 but no further. The other three catalysts all exhibit mixed reduction pathways leading to both H2O2 and H2O. However, the pathways that lead to H2O do not involve H2O2 as an intermediate. A possible mechanistic scheme is offered to account for the observed behavior.