445 resultados para Medical Pharmacology
Resumo:
Peroxisome proliferator-activated receptors (PPARs) are ligand-activated nuclear transcription factors that belong to the nuclear receptor superfamily. Three isoforms of PPAR have been identified, alpha, delta and gamma, which play distinct roles in the regulation of key metabolic processes, such as glucose and lipid redistribution. PPARalpha is expressed predominantly in the liver, kidney and heart, and is primarily involved in fatty acid oxidation. PPARgamma is mainly associated with adipose tissue, where it controls adipocyte differentiation and insulin sensitivity. PPARdelta is abundantly and ubiquitously expressed, but as yet its function has not been clearly defined. Activators of PPARalpha (fibrates) and gamma (thiazolidinediones) have been used clinically for a number of years in the treatment of hyperlipidaemia and to improve insulin sensitivity in diabetes. More recently, PPAR activation has been found to confer additional benefits on endothelial function, inflammation and thrombosis, suggesting that PPAR agonists may be good candidates for the treatment of cardiovascular disease. In this regard, it has been demonstrated that PPAR activators are capable of reducing blood pressure and attenuating the development of atherosclerosis and cardiac hypertrophy. This review will provide a detailed discussion of the current understanding of basic PPAR physiology, with particular reference to the cardiovascular system. It will also examine the evidence supporting the involvement of the different PPAR isoforms in cardiovascular disease and discuss the current and potential future clinical applications of PPAR activators.
Resumo:
Objectives: The aim of the investigation was to use in vitro transposon mutagenesis to generate metronidazole resistance in the obligately anaerobic pathogenic bacterium Bacteroides thetaiotaomicron, and to identify the genes involved to enable investigation of potential mechanisms for the generation of metronidazole resistance.
Methods: The genes affected by the transposon insertion were identified by plasmid rescue and sequencing. Expression levels of the relevant genes were determined by semi-quantitative RNA hybridization and catabolic activity by lactate dehydrogenase/pyruvate oxidoreductase assays.
Results: A metronidazole-resistant mutant was isolated and the transposon insertion site was identified in an intergenic region between the rhaO and rhaR genes of the gene cluster involved in the uptake and catabolism of rhamnose. Metronidazole resistance was observed during growth in defined medium containing either rhamnose or glucose. The metronidazole-resistant mutant showed improved growth in the presence of rhamnose as compared with the wild-type parent. There was increased transcription of all genes of the rhamnose gene cluster in the presence of rhamnose and glucose, likely due to the transposon providing an additional promoter for the rhaR gene, encoding the positive transcriptional regulator of the rhamnose operon. The B. thetaiotaomicron metronidazole resistance phenotype was recreated by overexpressing the rhaR gene in the B. thetaiotaomicron wild-type parent. Both the metronidazole-resistant transposon mutant and RhaR overexpression strains displayed a phenotype of higher lactate dehydrogenase and lower pyruvate oxidoreductase activity in comparison with the parent strain during growth in rhamnose.
Conclusions: These data indicate that overexpression of the rhaR gene generates metronidazole resistance in B. thetaiotaomicron
Resumo:
The safety and tolerability of vandetanib (ZACTIMA; ZD6474) plus FOLFIRI was investigated in patients with advanced colorectal cancer (CRC). METHODS: Patients eligible for first- or second-line chemotherapy received once-daily oral doses of vandetanib (100 or 300 mg) plus 14-day treatment cycles of FOLFIRI. RESULTS: A total of 21 patients received vandetanib 100 mg (n = 11) or 300 mg (n = 10) + FOLFIRI. Combination therapy was well tolerated at both vandetanib dose levels. There were no DLTs in the vandetanib 100 mg cohort and one DLT of hypertension (CTCAE grade 3) in the 300 mg cohort. The most common adverse events were diarrhoea (n = 20), nausea (n = 12) and fatigue (n = 10). Two patients (one in each cohort) discontinued vandetanib due to adverse events (rash, 100 mg cohort; hypertension, 300 mg cohort). There was no apparent pharmacokinetic interaction between vandetanib and FOLFIRI. Preliminary efficacy results included two confirmed partial responses in the 100 mg cohort and 9 patients with stable disease > or =8 weeks (100 mg, n = 7; 300 mg, n = 2). CONCLUSIONS: Once-daily vandetanib (100 or 300 mg) in combination with a standard FOLFIRI regimen was generally well tolerated in patients with advanced CRC.
Resumo:
AIMS
The aim of this study was to investigate the in?uence of genetic polymorphisms in ABCB1 on the incidence of nephrotoxicity and tacrolimus dosage-requirements in paediatric patients following liver transplantation.
METHODS
Fifty-one paediatric liver transplant recipients receiving tacrolimus were genotyped for ABCB1 C1236>T, G2677>T and C3435>T polymorphisms. Dose-adjusted tacrolimus trough concentrations and estimated glomerular ?ltration rates (EGFR) indicative of renal toxicity were determined and correlated with the corresponding genotypes.
RESULTS
The present study revealed a higher incidence of the ABCB1 variant-alleles examined among patients with renal dysfunction (30% reduction in EGFR) at 6 months post-transplantation (1236T allele: 63.3% vs 37.5% in controls,P = 0.019; 2677T allele: 63.3% vs. 35.9%, p = 0.012; 3435T allele: 60% vs. 39.1%,P = 0.057). Carriers of the G2677->T variant allele also had a signi?cant reduction (%) in EGFR at 12 months post-transplant (mean difference = 22.6%; P = 0.031). Haplotype analysis showed a signi?cant association between T-T-T haplotypes and an increased incidence of nephrotoxicity at 6 months post-transplantation (haplotype-frequency = 52.9% in nephrotoxic patients vs 29.4% in controls; P = 0.029). Furthermore, G2677->T and C3435->T polymorphisms and T-T-T haplotypes were signi?cantly correlated with higher tacrolimus dose-adjusted pre-dose concentrations at various time points examined long after drug initiation.
CONCLUSIONS
These ?ndings suggest that ABCB1 polymorphisms in the native intestine signi?cantly in?uence tacrolimus dosage-requirement in the stable phase after transplantation. In addition, ABCB1 polymorphisms in paediatric liver transplant recipients may predispose them to nephrotoxicity over the ?rst year posttransplantation. Genotyping future transplant recipients for ABCB1 polymorphisms, therefore, could have the potential to individualize better tacrolimus immunosuppressive therapy and enhance drug safety
Resumo:
Background: The work in this study appraised photodynamic treatment (PDT) as a treatment method for vulval intraepithelial neoplasia (VIN) using a novel bioadhesive patch to deliver aminolevulinic acid. An analysis of changes in expression of apoptotic and cell cycle proteins (p53, p21, Mdm2, Blc-2, Bax, Ki-67) in response to PDT was evaluated. Methods: PDT was performed using non-laser light, either as a one or two-cycle treatment, with clinical and pathological assessment following after 6 weeks. Twenty-three patients with 25 VIN lesions underwent 49 cycles of PDT Patches were designed to conform to uneven vulval skin and contained 38 mg cm(-2) aminolevulinic acid. Assessment was carried out at 6 weeks post-treatment. Patient-based treatment assessment, along with clinical and pathological changes, were monitored. Immunohistochemical staining was used to elucidate a possible biomolecular basis for induced cellular changes. Results: Most patients (52%) reported a symptomatic response, with normal pathology restored in 38% of lesions. The patch was easy to apply and remove, causing minimal discomfort. Fluorescence inspection confirmed protoporphyrin accumulation. Pain during implementation of PDT was problematic, necessitating some form of local analgesia. Changes in expression of cell cycle and apoptotic-related proteins suggested involvement of apoptotic pathways. Down regulation of p21 and inverse changes in Bcl-2 and Bax were key findings. Conclusion: Treatment of VIN lesions using a novel bioadhesive patch induced changes in cell cycle and apoptotic proteins in response to PDT with possible utilisation of apoptotic pathways. The efficacy of PDT in treating VIN could be improved by a better understanding of these apoptotic mechanisms, the influence of factors, such as HPV status, and of the need for effective pain management.
Resumo:
A novel 5-aminolevulinic acid (ALA)-containing microparticulate system was produced recently, based on incorporation of ALA into particles prepared from a suppository base that maintains drug stability during storage and melts at skin temperature to release its drug payload. The novel particulate system was applied to the skin of living animals, followed by study of protoporphyrin IX (PpIX) production. The effect of formulating the microparticles in different vehicles was investigated and also the phototoxicity of the PpIX produced using a model tumour. Particles formulated in propylene glycol gels (10% w/w ALA loading) generated the highest peak PpIX fluorescence levels in normal mouse skin. Peak PpIX levels induced in skin overlying subcutaneously implanted WiDr tumours were significantly lower than in normal skin for both the 10% w/w ALA microparticles alone and the 10% w/w ALA microparticles in propylene glycol gels during continuous 12 h applications. Tumours not treated with photodynamic therapy continued to grow over the 17 days of the anti-tumour study. However, those treated with 12 h applications of either the 10% w/w ALA microparticles alone or the 10% w/w ALA microparticles in propylene glycol gel followed by a single laser irradiation showed no growth. The gel formulation performed slightly better once again, reducing the tumour growth rate by approximately 105%, compared with the 89% reduction achieved using particles alone. Following the promising results obtained in this study, work is now going on to prepare particle-loaded gels under GMP conditions with the aim of initiating an exploratory clinical trial.
Resumo:
OBJECTIVES: This study reports the development, characterisation and microbiological testing of surface-modified polyvinylchloride (PVC) films for the purpose of reducing bacterial adherence.
METHODS: Irreversible covalent surface modification was achieved via nucleophilic substitution of fluorinated thiol-terminated compounds onto the polymer backbone. Four fluorinated modifiers, 2,3,5,6-tetrafluorothiophenol (TFTP), 4-(trifluoromethyl)thiophenol (TFMTP), 3,5-bis(trifluoromethyl)benzenethiol (BTFMBT) and 3,3,4,4,5,5,6,6,7, 7,8,8,9,9,10,10,10-heptadecafluoro-decane-1-thiol (HDFDT), were investigated. Modification was confirmed using attenuated total reflectance infrared spectroscopy; Raman mapping demonstrated that modification was homogenous on the macroscopic scale. The influence of fluorination on surface hydrophobicity was studied by contact angle analysis. The effect on microbial adherence was examined using Pseudomonas aeruginosa and Staphylococcus aureus.
KEY FINDINGS: The resultant changes in contact angle relative to control PVC ranged from -4 degrees to +14 degrees . In all cases, adherence of P. aeruginosa and S. aureus was significantly reduced relative to control PVC, with adherence levels ranging from 62% and 51% for TFTP-modified PVC to 32% and 7% for TFMTP-modified PVC.
CONCLUSIONS: These results demonstrate an important method in reducing the incidence of bacterial infection in PVC medical devices without compromising mechanical properties.