145 resultados para Low density lipoproteins
Resumo:
The phase diagram of water at negative pressures as obtained from computer simulations for two models of water, TIP4P/2005 and TIP5P is presented. Several solid structures with lower densities than ice Ih, so-called virtual ices, were considered as possible candidates to occupy the negative pressure region of the phase diagram of water. In particular the empty hydrate structures sI, sII, and sH and another, recently proposed, low-density ice structure. The relative stabilities of these structures at 0 K was determined using empirical water potentials and density functional theory calculations. By performing free energy calculations and Gibbs-Duhem integration the phase diagram of TIP4P/2005 was determined at negative pressures. The empty hydrates sII and sH appear to be the stable solid phases of water at negative pressures. The phase boundary between ice Ih and sII clathrate occurs at moderate negative pressures, while at large negative pressures sH becomes the most stable phase. This behavior is in reasonable agreement with what is observed in density functional theory calculations.
Resumo:
Familial hypercholesterolemia (FH) is a common single gene disorder, which predisposes to coronary artery disease. In a previous study, we have shown that in patients with definite FH around 20% had no identifiable gene defect after screening the entire exon coding area of the low density lipoprotein receptor (LDLR) and testing for the common Apolipoprotein B (ApoB) R3500Q mutation. In this study, we have extended the screen to additional families and have included the non-coding intron splice regions of the gene. In families with definite FH (tendon xanthoma present, n = 68) the improved genetic screening protocol increased the detection rate of mutations to 87%. This high detection rate greatly enhances the potential value of this test as part of a clinical screening program for FH. In contrast, the use of a limited screen in patients with possible FH (n = 130) resulted in a detection rate of 26%, but this is still of significant benefit in diagnosis of this genetic condition. We have also shown that 14% of LDLR defects are due to splice site mutations and that the most frequent splice mutation in our series (c.1845 + 11 c > g) is expressed at the RNA level. In addition, DNA samples from the patients in whom no LDLR or ApoB gene mutations were found, were sequenced for the NARC-1 gene. No mutations were identified which suggests that the role of NARC-1 in causing FH is minor. In a small proportion of families (
Resumo:
The aim of this study was to develop a mutation screening protocol for familial hypercholesterolaemia (FH) patients and to assess genotype/phenotype effects in terms of pre-treatment lipid profiles and presentation of tendon xanthomata (TX). A total of 158 families with clinical definitions of possible (120) or definite (38) FH were studied using a tiered screening protocol. Mutations were identified in 52 families, 44 families showing 23 different LDLR gene defects and eight families showing the common Apo B100 gene defect R3500Q. LDLR defects were detected in various regions of the gene with 56% in the LDL binding domain (exons 2-6) and 37% in the EGF precursor homology domain (exons 7-14). The most common mutations were D461N(7), C210X(5), 932delA(5), and C163Y(4). Frameshift mutations accounted for 20% with nonsense 13%, mis-sense 35%, splice 3%, Apo B 13% and 2% large deletion, 13% of clinically definite FH remained undefined. In conclusion, DNA based diagnosis is possible in 79% (30/38) of clinically definite FH families and of the 120 possible FH families at the start of the screening program, 18% (22/120) now have defined mutations. Overall 60 families from the original 158 meet the clinical and/or genetic criteria for definite FH. Tendon xanthomata were present in only 58% (30/52) of genetically defined FH families, thus limiting its use as a strict diagnostic criteria. Families with low density lipoprotein receptor (LDLR) defects present with higher total and LDL cholesterol levels and a higher incidence of TX than do those with the common Apo B variant, and frameshift mutations appear to have the most severe presentation. Copyright (C) 1999 Elsevier Science Ireland Ltd.
Resumo:
Objective: To investigate association of scavenger receptor class B, member 1 (SCARB1) genetic variants with serum carotenoid levels of lutein (L) and zeaxanthin (Z) and macular pigment optical density (MPOD).
Design: A cross-sectional study of healthy adults aged 20 to 70.
Participants: We recruited 302 participants after local advertisement.
Methods: We measured MPOD by customized heterochromatic flicker photometry. Fasting blood samples were taken for serum L and Z measurement by high-performance liquid chromatography and lipoprotein analysis by spectrophotometric assay. Forty-seven single nucleotide polymorphisms (SNPs) across SCARB1 were genotyped using Sequenom technology. Association analyses were performed using PLINK to compare allele and haplotype means, with adjustment for potential confounding and correction for multiple comparisons by permutation testing. Replication analysis was performed in the TwinsUK and Carotenoids in Age-Related Eye Disease Study (CAREDS) cohorts.
Main Outcome Measures: Odds ratios for MPOD area, serum L and Z concentrations associated with genetic variations in SCARB1 and interactions between SCARB1 and gender.
Results: After multiple regression analysis with adjustment for age, body mass index, gender, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, triglycerides, smoking, and dietary L and Z levels, 5 SNPs were significantly associated with serum L concentration and 1 SNP with MPOD (P<0.01). Only the association between rs11057841 and serum L withstood correction for multiple comparisons by permutation testing (P<0.01) and replicated in the TwinsUK cohort (P = 0.014). Independent replication was also observed in the CAREDS cohort with rs10846744 (P = 2×10-4), an SNP in high linkage disequilibrium with rs11057841 (r2 = 0.93). No interactions by gender were found. Haplotype analysis revealed no stronger association than obtained with single SNP analyses.
Conclusions: Our study has identified association between rs11057841 and serum L concentration (24% increase per T allele) in healthy subjects, independent of potential confounding factors. Our data supports further evaluation of the role for SCARB1 in the transport of macular pigment and the possible modulation of age-related macular degeneration risk through combating the effects of oxidative stress within the retina.
Financial Disclosure(s): Proprietary or commercial disclosures may be found after the references. Ophthalmology 2013;120:1632–1640 © 2013 by the American Academy of Ophthalmology.
Resumo:
Background: In recent years, much progress has been made in the treatment of multiple myeloma. However, a major limitation of existing chemotherapeutic drugs is the eventual emergence of resistance; hence, the development of novel agents with new mechanisms of action is pertinent. Here, we describe the activity and mechanism of action of pyrrolo-1,5-benzoxazepine-15 (PBOX-15), a novel microtubule-targeting agent, in multiple myeloma cells.
Methods: The anti-myeloma activity of PBOX-15 was assessed using NCI-H929, KMS11, RPMI8226, and U266 cell lines, and primary myeloma cells. Cell cycle distribution, apoptosis, cytochrome c release, and mitochondrial inner membrane depolarisation were analysed by flow cytometry; gene expression analysis was carried out using TaqMan Low Density Arrays; and expression of caspase-8 and Bcl-2 family of proteins was assessed by western blot analysis.
Results: Pyrrolo-1,5-benzoxazepine-15 induced apoptosis in ex vivo myeloma cells and in myeloma cell lines. Death receptor genes were upregulated in both NCI-H929 and U266 cell lines, which displayed the highest and lowest apoptotic responses, respectively, following treatment with PBOX-15. The largest increase was detected for the death receptor 5 (DR5) gene, and cotreatment of both cell lines with tumour necrosis factor-related apoptosis-inducing ligand (TRAIL), the DR5 ligand, potentiated the apoptotic response. In NCI-H929 cells, PBOX-15-induced apoptosis was shown to be caspase-8 dependent, with independent activation of extrinsic and intrinsic apoptotic pathways. A caspase-8-dependent decrease in expression of Bim(EL) preceded downregulation of other Bcl-2 proteins (Bid, Bcl-2, Mcl-1) in PBOX-15-treated NCI-H929 cells.
Conclusion: PBOX-15 induces apoptosis and potentiates TRAIL-induced cell death in multiple myeloma cells. Thus, PBOX-15 represents a promising agent, with a distinct mechanism of action, for the treatment of this malignancy. British Journal of Cancer (2011) 104, 281-289. doi: 10.1038/sj.bjc.6606035 www.bjcancer.com Published online 21 December 2010 (C) 2011 Cancer Research UK
Resumo:
Dyslipidemia is an important risk factor for cardiovascular complications in persons with diabetes. Low-density lipoprotein-cholesterol (LDL-C) is the 'cornerstone' for assessment of lipoprotein-associated risk. However, LDL-C levels do not reflect the classic 'diabetic dyslipidemia' of hypertriglyceridemia and low high-density lipoprotein-cholesterol (HDL-C). Measurements of plasma apolipoprotein B100 concentrations and non-HDL-C may improve the definition of dyslipidemia. Statins, nicotinic acid and fibrates have roles in treating dyslipidemia in diabetes. Residual risk (i.e. risk that persists after correction of 'conventional' plasma lipoprotein abnormalities) is a new concept in the role of dyslipidemia in the pathogenesis of diabetic vascular complications. For example, regardless of plasma levels, lipoprotein extravasation through a leaking retinal blood barrier and subsequent modification may be crucial in the development of diabetic retinopathy. The current approach to the management of dyslipidemia in diabetes is briefly summarized, followed by a discussion of new concepts of residual risk and emerging lipoprotein-related mechanisms for vascular disease in diabetes.
Resumo:
Our recent studies suggest that activation of the wingless-type MMTV integration site (WNT) pathway plays pathogenic roles in diabetic retinopathy and age-related macular degeneration. Here we investigated the causative role of oxidative stress in retinal WNT pathway activation in an experimental model of diabetes.
Resumo:
Strawberries have been reported to be potent antioxidants and reduce cardiovascular risk factors, such as elevated blood pressure, hyperglycemia, dyslipidemia, and inflammation in limited studies. We hypothesized that freeze-dried strawberry supplementation will improve blood pressure, impaired glucose, dyslipidemia, or circulating adhesion molecules in obese subjects with metabolic syndrome, thereby lowering cardiovascular risk factors in these subjects. Twenty-seven subjects with metabolic syndrome (2 males and 25 females; body mass index, 37.5 +/- 2.15 kg/m(2); age, 47.0 +/- 3.0 years [means +/- SE]) consumed 4 cups of freeze-dried strawberry beverage (50 g freeze-dried strawberries approximately 3 cups fresh strawberries) or equivalent amounts of fluids (controls, 4 cups of water) daily for 8 weeks in a randomized controlled trial. Anthropometrics and blood pressure measurements, assessment of dietary intakes, and fasting blood draws were conducted at screen and 8 weeks of the study. Strawberry supplementation significantly decreased total and low-density lipoprotein cholesterol (5.8 +/- 0.2 to 5.2 +/- 0.2 mmol/L and 3.5 +/- 0.2 to 3.1 +/- 0.1 mmol/L, respectively [means +/- SE], P <.05) and small low-density lipoprotein particles using nuclear magnetic resonance-determined lipoprotein subclass profile vs controls at 8 weeks (794.6 +/- 94.0 to 681.8 +/- 86.0 nmol/L [means +/- SE], P <.05). Strawberry supplementation further decreased circulating levels of vascular cell adhesion molecule-1 vs controls at 8 weeks (272.7 +/- 17.4 to 223.0 +/- 14.0 ng/mL [means +/- SE], P <.05). Serum glucose, triglycerides, high-density lipoprotein cholesterol, blood pressure, and waist circumference were not affected. Thus, short-term freeze-dried strawberry supplementation improved selected atherosclerotic risk factors, including dyslipidemia and circulating adhesion molecules in subjects with metabolic syndrome, and these results need confirmation in future trials.
Resumo:
Although Wnt signaling is known to mediate multiple biological and pathological processes, its association with diabetic retinopathy (DR) has not been established. Here we show that retinal levels and nuclear translocation of beta-catenin, a key effector in the canonical Wnt pathway, were increased in humans with DR and in three DR models. Retinal levels of low-density lipoprotein receptor-related proteins 5 and 6, coreceptors of Wnts, were also elevated in the DR models. The high glucose-induced activation of beta-catenin was attenuated by aminoguanidine, suggesting that oxidative stress is a direct cause for the Wnt pathway activation in diabetes. Indeed, Dickkopf homolog 1, a specific inhibitor of the Wnt pathway, ameliorated retinal inflammation, vascular leakage, and retinal neovascularization in the DR models. Dickkopf homolog 1 also blocked the generation of reactive oxygen species induced by high glucose, suggesting that Wnt signaling contributes to the oxidative stress in diabetes. These observations indicate that the Wnt pathway plays a pathogenic role in DR and represents a novel therapeutic target.
Resumo:
The contribution of preexisting hypercholesterolemia to diabetic nephropathy remains unclear. We assessed the impact of hypercholesterolemia on diabetic nephropathy using a double knockout (DKO) mouse, null for the low-density lipoprotein receptor (LDLRNDASH;/NDASH;) and the apoB mRNA editing catalytic polypeptide 1 (APOBEC1NDASH;/NDASH;).
Resumo:
Nepsilon-(Carboxymethyl)lysine (CML) is a stable chemical modification of proteins formed from both carbohydrates and lipids during autoxidation reactions. We hypothesized that carboxymethyl lipids such as (carboxymethyl)phosphatidylethanolamine (carboxymethyl-PE) would also be formed in these reactions, and we therefore developed a gas chromatography-mass spectrometry assay for quantification of carboxymethylethanolamine (CME) following hydrolysis of phospholipids. In vitro, CME was formed during glycation of dioleoyl-PE under air and from linoleoylpalmitoyl-PE, but not from dioleoyl-PE, in the absence of glucose. In vivo, CME was detected in lipid extracts of red blood cell membranes, approximately 0.14 mmol of CME/mol of ethanolamine, from control and diabetic subjects, (n = 22, p > 0.5). Levels of CML in erythrocyte membrane proteins were approximately 0.2 mmol/mol of lysine for both control and diabetic subjects (p > 0.5). For this group of diabetic subjects there was no indication of increased oxidative modification of either lipid or protein components of red cell membranes. CME was also detected in fasting urine at 2-3 nmol/mg of creatinine in control and diabetic subjects (p = 0.085). CME inhibited detection of advanced glycation end product (AGE)-modified protein in a competitive enzyme-linked immunosorbent assay using an anti-AGE antibody previously shown to recognize CML, suggesting that carboxymethyl-PE may be a component of AGE lipids detected in AGE low density lipoprotein. Measurement of levels of CME in blood, tissues, and urine should be useful for assessing oxidative damage to membrane lipids during aging and in disease.
Resumo:
Modifications of extant plasma proteins, structural proteins,and other macromolecules are enhanced in diabetes because of increased glycation (secondary to increased glucose concentrations) and perhaps because of increased oxidative stress, Increased glycation is present from the time of onset of diabetes, but the relation between diabetes and oxidative stress is less clear: increased oxidative stress may occur later in the course of disease, as vascular damage becomes established, or it may be a feature of uncomplicated diabetes, The combined effects of protein modification by glycation and oxidation may contribute to the development of accelerated atherosclerosis in diabetes and to the development of microvascular complications, Thus, even if not increased by diabetes, variations in oxidative stress may modulate the consequences of hyperglycemia in individual diabetic patients, In this review, the close interaction between glycation and oxidative processes is discussed, and the theme is developed that the most significant modifications of proteins are the result of interactions with reactive carbonyl groups, While glucose itself contains a carbonyl group that is involved in the initial glycation reaction, the most important and reactive carbonyls are formed by free radical-oxidation reactions damaging either carbohydrates (including glucose itself) or lipids, The resulting carbonyl-containing intermediate products then modify proteins, yielding "glycoxidation" and "lipoxidation" products, respectively, This common pathway for glucose and lipid-mediated stress, which may contribute to diabetic complications, is the basis for the carbonyl stress hypothesis for the development of diabetic complications.
Resumo:
A single base deletion (211delG) in the low density lipoprotein receptor (LDLR) gene was shown to cause familial hypercholesterolaemia (FH) in a large family from Northern Ireland. Twenty-four of 52 family members tested had this mutation, 13 of which were newly diagnosed. Mutation-positive individuals had significantly higher mean total-cholesterol (TC) and LDL-cholesterol (LDL-C) than those without 211delG. LDL-C was a more accurate indicator of disease status than TC, When TC levels alone were considered, in individuals over 16 years, a false negative rate (TC <7.5 mmol/l) of 40% was found; however, this fell to 13% based on inclusion of LDL-C levels. Individuals with coronary artery disease (CAD) had significantly higher TC levels than those without CAD and tended to have tendinous xanthomas (TX) and corneal arcus (CA). Genetic polymorphisms in the angiotensin converting enzyme (ACE) and apolipoprotein (ape) B genes did not appear to be associated with lipid levels or with the clinical severity of the disease; however, the apo E e4 allele did show a lipid-raising effect in individuals with the mutation.
Resumo:
The techniques of principal component analysis (PCA) and partial least squares (PLS) are introduced from the point of view of providing a multivariate statistical method for modelling process plants. The advantages and limitations of PCA and PLS are discussed from the perspective of the type of data and problems that might be encountered in this application area. These concepts are exemplified by two case studies dealing first with data from a continuous stirred tank reactor (CSTR) simulation and second a literature source describing a low-density polyethylene (LDPE) reactor simulation.
Resumo:
Background: A relationship may exist between body iron stores, endothelial dysfunction and overall cardiovascular risk.
Aims: To compare vascular compliance, biochemical endothelial function and antioxidant status between patients with homozygous hereditary haemochromatosis and healthy controls.
Methods: Haemochromatosis patients and healthy controls were recruited. Measures of vascular compliance were assessed by applanation tonometry. Serological markers of endothelial function (plasma lipid hydroperoxides, cell adhesion molecules), antioxidant levels (ascorbate, lipid soluble antioxidants) and high-sensitivity C-reactive protein (CRP) were also measured.
Results: Thirty-five hereditary haemochromatosis patients (ten females, mean age 54.6) and 36 controls (27 female, mean age 54.0) were recruited. Haemochromatosis patients had significantly higher systolic and diastolic blood pressures. Pulse wave velocity (PWV) was significantly higher in male haemochromatosis patients (9.90 vs. 8.65 m/s, p = 0.048). Following adjustment for age and blood pressure, male haemochromatosis patients continued to have a trend for higher PWVs (+1.37 m/s, p = 0.058). Haemochromatosis patients had significantly lower levels of ascorbate (46.11 vs. 72.68 lmol/L, p = 0.011), retinol (1.17 vs. 1.81 lmol/L, p = 0.001) and g-tocopherol (2.51 vs. 3.14 lmol/L, p = 0.011). However, there was no difference in lipid hydroperoxides (0.46 vs. 0.47 nmol/L, p = 0.94), cell adhesion molecule levels (ICAM: 348.12 vs. 308.03 ng/mL, p = 0.32 and VCAM: 472.78 vs. 461.31 ng/mL, p = 0.79) or high-sensitivity CRP (225.01 vs. 207.13 mg/L, p = 0.32).
Conclusions: Haemochromatosis is associated with higher PWVs in males and diminished antioxidants across the sexes but no evidence of endothelial dysfunction or increased lipid peroxidation.