173 resultados para Logic Separation
Resumo:
This paper considers the separation and recognition of overlapped speech sentences assuming single-channel observation. A system based on a combination of several different techniques is proposed. The system uses a missing-feature approach for improving crosstalk/noise robustness, a Wiener filter for speech enhancement, hidden Markov models for speech reconstruction, and speaker-dependent/-independent modeling for speaker and speech recognition. We develop the system on the Speech Separation Challenge database, involving a task of separating and recognizing two mixing sentences without assuming advanced knowledge about the identity of the speakers nor about the signal-to-noise ratio. The paper is an extended version of a previous conference paper submitted for the challenge.
Resumo:
Au nanoparticles (AuNPs) have been widely used not only as optical labels or ‘weight” labels for the detections of biorecognition events but also an amplifier of surface plasmon resonance biosensors. The intrinsic property of gold nuclei composing of a group of Au atoms to catalyze the reduction of metal ions on the NPs and thereby to enlarge the metallic nanoparticles is employed in different biosensing paths. In a solution containing Au+ ions (e.g. HAuCl4) and the Au clusters, hydrated electrons which are reduced from oxidation of reducers (H2O2, sodium citrate, ascorbic acid, or NaBH4) will be used to reduce the Au+ ion leading to the deposition of Au+ to the Au0 (Au clusters). The reaction will be catalyzed continuously by the Au0 until the Au+ ions and hydrated electrons are exhausted. As a result, the AuNPs will be grown and their optical properties are also changed. If the AuNP nanoclusters are used as probes, the color change will be dependent on amount of analytes, thus give a quantitative monitoring of the analytes.
In this study, we incorporate the use of magnetic beads with the nanocrystalline growth to quantify a target protein based on immunoreactions. Prostate specific antigen (PSA) is chosen as the target analyte because of its values in diagnosis of prostate cancer. A double-sandwiched immunoassay is performed by gold-tagged monoclonal PSA antibody-PSA antigen – magnetic bead-tagged polyclonal PSA antibody interactions. After the immunoreactions, the target analytes are preconcentrated and separated by the magnetic beads while the nanogrowth plays a role of colorimetric signal developer.
The result shows that this is a very sensitive, robust and excellent strategy to detect biological interactions. PSA antigen is detected at femtomolar level with very high specificity under the presence of undesired proteins of crude samples. Furthermore, the method also shows great potential to detect other biological interactions. More details will be described in our presentation.
Resumo:
Drawing on a perspective which takes into account the convergences of sovereign and biopolitical ruling apparatuses, the aim of this article is to provide a comprehensive view of the Separation Wall constructed by Israel in East Jerusalem, and, through it, of Israeli control of Palestinian East Jerusalem. Neither a comprehensive border, nor a mere barrier, the Separation Wall which is being constructed in Jerusalem operates to reinstates sovereign power in arrays of governmentality for the purpose of drawing on the ability of sovereignty to appropriate legitimacy for the territorialisation of governmentality. This article claims that these territorialised arrays of governmentality give rise to processes of racialisation, by maintaining a grip on the communities of Palestinians in East Jerusalem and sustaining them in an intermediate position, standing in the way of their full integration into the Israeli population while severing their existing connections with the Palestinians in the West Bank. © Taylor & Francis Group, LLC.
Resumo:
Several logic gates and switches can be accessed from two different combinations of a single set of fluorophore, receptor and spacer components.
Resumo:
Recovery of cellulose fibres from paper mill effluent has been studied using common polysaccharides or biopolymers such as Guar gum, Xanthan gum and Locust bean gum as flocculent. Guar gum is commonly used in sizing paper and routinely used in paper making. The results have been compared with the performance of alum, which is a common coagulant and a key ingredient of the paper industry. Guar gum recovered about 3.86 mg/L of fibre and was most effective among the biopolymers. Settling velocity distribution curves demonstrated that Guar gum was able to settle the fibres faster than the other biopolymers; however, alum displayed the highest particle removal rate than all the biopolymers at any of the settling velocities. Alum, Guar gum, Xanthan gum and Locust bean gum removed 97.46%, 94.68%, 92.39% and 92.46% turbidity of raw effluent at a settling velocity of 0.5 cm/min, respectively. The conditions for obtaining the lowest sludge volume index such as pH, dose and mixing speed were optimised for guar gum which was the most effective among the biopolymers. Response surface methodology was used to design all experiments, and an optimum operational setting was proposed. The test results indicate similar performance of alum and Guar gum in terms of floc settling velocities and sludge volume index. Since Guar gum is a plant derived natural substance, it is environmentally benign and offers a green treatment option to the paper mills for pulp recycling.
Resumo:
Structural and functional information encoded in DNA combined with unique properties of nanomaterials could be of use for the construction of novel biocomputational circuits and intelligent biomedical nanodevices. However, at present their practical applications are still limited by either low reproducibility of fabrication, modest sensitivity, or complicated handling procedures. Here, we demonstrate the construction of label-free and switchable molecular logic gates that use specific conformation modulation of a guanine- and thymine- rich DNA, while the optical readout is enabled by the tunable alphabetical metamaterials, which serve as a substrate for surface enhanced Raman spectroscopy (MetaSERS). By computational and experimental investigations, we present a comprehensive solution to tailor the plasmonic responses of MetaSERS with respect to the metamaterial geometry, excitation energy, and polarization. Our tunable MetaSERS-based DNA logic is simple to operate, highly reproducible, and can be stimulated by ultra-low concentration of the external inputs, enabling an extremely sensitive detection of mercury ions.
Resumo:
Currently there is extensive theoretical work on inconsistencies in logic-based systems. Recently, algorithms for identifying inconsistent clauses in a single conjunctive formula have demonstrated that practical application of this work is possible. However, these algorithms have not been extended for full knowledge base systems and have not been applied to real-world knowledge. To address these issues, we propose a new algorithm for finding the inconsistencies in a knowledge base using existing algorithms for finding inconsistent clauses in a formula. An implementation of this algorithm is then presented as an automated tool for finding inconsistencies in a knowledge base and measuring the inconsistency of formulae. Finally, we look at a case study of a network security rule set for exploit detection (QRadar) and suggest how these automated tools can be applied.
Resumo:
In this paper, we propose a system level design approach considering voltage over-scaling (VOS) that achieves error resiliency using unequal error protection of different computation elements, while incurring minor quality degradation. Depending on user specifications and severity of process variations/channel noise, the degree of VOS in each block of the system is adaptively tuned to ensure minimum system power while providing "just-the-right" amount of quality and robustness. This is achieved, by taking into consideration block level interactions and ensuring that under any change of operating conditions, only the "less-crucial" computations, that contribute less to block/system output quality, are affected. The proposed approach applies unequal error protection to various blocks of a system-logic and memory-and spans multiple layers of design hierarchy-algorithm, architecture and circuit. The design methodology when applied to a multimedia subsystem shows large power benefits ( up to 69% improvement in power consumption) at reasonable image quality while tolerating errors introduced due to VOS, process variations, and channel noise.
Resumo:
Aqueous core/polymer shell microcapsules with mommuclear and polynuclear core morphologies have been formed by internal phase separation from water-in-oil emulsions. The water-in-oil emulsions were prepared with the shell polymer dissolved in the aqueous phase by adding a low boiling point cosolvent. Subsequent removal of this cosolvent (by evaporation) leads to phase separation of the polymer and, if the spreading conditions are correct, formation of a polymer shell encapsulating the aqueous core. Poly(tetrahydrofuran) (PTHF) shell/aqueous core microcapsules, with a single (mononuclear) core, have been prepared, but the low T-g (-84 degreesC) of PTHF makes characterization of the particles more difficult. Poly(methyl methacrylate) and poly(isobutyl methacrylate) have higher T-g values (105 and 55 degreesC, respectively) and can be dissolved in water at sufficiently high acetone concentrations, but evaporation of the acetone from the emulsion droplets in these cases mostly resulted in polynuclear capsules, that is, having cores with many very small water droplets contained within the polymer matrix. Microcapsules with fewer, larger aqueous droplets in the core could be produced by reducing the rate of evaporation of the acetone. A possible mechanism for the formation of these polynuclear cores is suggested. These microcapsules were prepared dispersed in an oil-continuous phase. They could, however, be successfully transferred to a water-continuous phase, using a simple centrifugation technique. In this way, microcapsules with aqueous cores, dispersed in an aqueous medium, could be made. It would appear that a real challenge with the water-core systems, compared to the previous oil-core systems, is to obtain the correct order of magnitude of the three interfacial tensions, between the polymer, the aqueous phase, and the continuous oil phase; these control the spreading conditions necessary to produce shells rather than "acorns".
Resumo:
Tephrochronology, a key tool in the correlation of Quaternary sequences, relies on the extraction of tephra shards from sediments for visual identification and high-precision geochemical comparison. A prerequisite for the reliable correlation of tephra layers is that the geochemical composition of glass shards remains unaltered by natural processes (e.g. chemical exchange in the sedimentary environment) and/or by laboratory analytical procedures. However, natural glasses, particularly when in the form of small shards with a high surface to volume ratio, are prone to chemical alteration in both acidic and basic environments. Current techniques for the extraction of distal tephra from sediments involve the ‘cleaning’ of samples in precisely such environments and at elevated temperatures. The acid phase of the ‘cleaning’ process risks alteration of the geochemical signature of the shards, while the basic phase leads to considerable sample loss through dissolution of the silica network. Here, we illustrate the degree of alteration and loss to which distal tephras may be prone, and introduce a less destructive procedure for their extraction. This method is based on stepped heavy liquid flotation and which results in samples of sufficient quality for analysis while preserving their geochemical integrity. In trials, this method out-performed chemical extraction procedures in terms of the number of shards recovered and has resulted in the detection of new tephra layers with low shard concentrations. The implications of this study are highly significant because (i) the current database of distal tephra records and their corresponding geochemical signatures may require refinement and (ii) the record of distal tephras may be incomplete due to sample loss induced by corrosive laboratory procedures. It is therefore vital that less corrosive laboratory procedures are developed to make the detection and classification of distal glass tephra more secure.