141 resultados para Limit burning velocity


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present 65 optical spectra of the Type Ia supernova SN 2012fr, of which 33 were obtained before maximum light. At early times SN 2012fr shows clear evidence of a high-velocity feature (HVF) in the Si II 6355 line which can be cleanly decoupled from the lower velocity "photospheric" component. This Si II 6355 HVF fades by phase -5; subsequently, the photospheric component exhibits a very narrow velocity width and remains at a nearly constant velocity of v~12,000 km/s until at least 5 weeks after maximum brightness. The Ca II infrared (IR) triplet exhibits similar evidence for both a photospheric component at v~12,000 km/s with narrow line width and long velocity plateau, as well as a high-velocity component beginning at v~31,000 km/s two weeks before maximum. SN 2012fr resides on the border between the "shallow silicon" and "core-normal" subclasses in the Branch et al. (2009) classification scheme, and on the border between normal and "high-velocity" SNe Ia in the Wang et al. (2009a) system. Though it is a clear member of the "low velocity gradient" (LVG; Benetii et al., 2005) group of SNe Ia and exhibits a very slow light-curve decline, it shows key dissimilarities with the overluminous SN 1991T or SN 1999aa subclasses of SNe Ia. SN 2012fr represents a well-observed SN Ia at the luminous end of the normal SN Ia distribution, and a key transitional event between nominal spectroscopic subclasses of SNe Ia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article the multibody simulation software package MADYMO for analysing and optimizing occupant safety design was used to model crash tests for Normal Containment barriers in accordance with EN 1317. The verification process was carried out by simulating a TB31 and a TB32 crash test performed on vertical portable concrete barriers and by comparing the numerical results to those obtained experimentally. The same modelling approach was applied to both tests to evaluate the predictive capacity of the modelling at two different impact speeds. A sensitivity analysis of the vehicle stiffness was also carried out. The capacity to predict all of the principal EN1317 criteria was assessed for the first time: the acceleration severity index, the theoretical head impact velocity, the barrier working width and the vehicle exit box. Results showed a maximum error of 6% for the acceleration severity index and 21% for theoretical head impact velocity for the numerical simulation in comparison to the recorded data. The exit box position was predicted with a maximum error of 4°. For the working width, a large percentage difference was observed for test TB31 due to the small absolute value of the barrier deflection but the results were well within the limit value from the standard for both tests. The sensitivity analysis showed the robustness of the modelling with respect to contact stiffness increase of ±20% and ±40%. This is the first multibody model of portable concrete barriers that can reproduce not only the acceleration severity index but all the test criteria of EN 1317 and is therefore a valuable tool for new product development and for injury biomechanics research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: This study tested the role of K(+)- and Cl(-)-channels in retinal arteriolar smooth muscle in the regulation of retinal blood flow.

Methods: Studies were carried out in adult Male Hooded Lister rats. Selectivity of ion channel blockers was established using electrophysiological recordings from smooth muscle in isolated arterioles under voltage clamp conditions. Leukocyte velocity and retinal arteriolar diameters were measured in anesthetised animals using leukocyte fluorography and fluorescein angiography imaging with a confocal scanning laser ophthalmoscope. These values were used to estimate volumetric flow, which was compared between control conditions and following intravitreal injections of ion channel blockers, either alone or in combination with the vasoconstrictor potent Endothelin 1 (Et1).

Results: Voltage activated K(+)-current (IKv) was inhibited by correolide, large conductance (BK) Ca(2+)-activated K(+)-current (IKCa) by Penitrem A, and Ca(2+)-activated Cl(-)-current (IClCa) by disodium 4,4'-diisothiocyanatostilbene-2,2'-disulfonate (DIDS). Intravitreal injections (10µl) of DIDS (estimated intraocular concentration 10mM) increased flow by 22%, whereas the BK-blockers Penitrem A (1µM) and iberiotoxin (4µM), and the IKv-inhibitor correolide (40µM) all decreased resting flow by approximately 10%. Et1 (104nM) reduced flow by almost 65%. This effect was completely reversed by DIDS but was unaffected by Penitrem A, iberiotoxin or correolide.

Conclusions: These results suggest that Cl(-)-channels in retinal arteriolar smooth muscle limit resting blood flow and play an obligatory role in Et1 responses. K(+)-channel activity promotes basal flow but exerts little modifying effect on the Et1 response. Cl(-)-channels may be appropriate molecular targets in retinal pathologies characterised by increased Et1 activity and reduced blood flow.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a comparison of two Suzaku X-ray observations of the nearby (z = 0.184), luminous (L ∼ 10 erg s) type I quasar, PDS 456. A new 125 ks Suzaku observation in 2011 caught the quasar during a period of low X-ray flux and with a hard X-ray spectrum, in contrast with a previous 190 ks Suzaku observation in 2007 when the quasar appeared brighter and had a steep (Γ > 2) X-ray spectrum. The 2011 X-ray spectrum contains a pronounced trough near 9 keV in the quasar rest frame, which can be modeled with blueshifted iron K-shell absorption, most likely from the He- and H-like transitions of iron. The absorption trough is observed at a similar rest-frame energy as in the earlier 2007 observation, which appears to confirm the existence of a persistent high-velocity wind in PDS 456, at an outflow velocity of 0.25-0.30c. The spectral variability between 2007 and 2011 can be accounted for by variations in a partial covering absorber, increasing in covering fraction from the brighter 2007 observation to the hard and faint 2011 observation. Overall, the low-flux 2011 observation can be explained if PDS 456 is observed at relatively low inclination angles through a Compton-thick wind, originating from the accretion disk, which significantly attenuates the X-ray flux from the quasar. © 2014. The American Astronomical Society. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modal analysis is a popular approach used in structural dynamic and aeroelastic problems due to its efficiency. The response of a structure is compo
sed of the sum of orthogonal eigenvectors or modeshapes and corresponding modal frequencies. This paper investigates the importance of modeshapes on the aeroelastic response of the Goland wing subject to structural uncertainties. The wing undergoes limit cycle oscillations (LCO) as a result of the inclusion of polynomial stiffness nonlinearities. The LCO computations are performed using a Harmonic Balance approach for speed, the modal properties of the system are extracted from MSC NASTRAN. Variability in both the wing’s structure and the store centre of gravity location is investigated in two cases:- supercritical and subcritical type LCOs. Results show that the LCO behaviour is only sensitive to change in modeshapes when the nature of the modes are changing significantly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Irish and UK governments, along with other countries, have made a commitment to limit the concentrations of greenhouse gases in the atmosphere by reducing emissions from the burning of fossil fuels. This can be achieved (in part) through increasing the sequestration of CO2 from the atmosphere including monitoring the amount stored in vegetation and soils. A large proportion of soil carbon is held within peat due to the relatively high carbon density of peat and organic-rich soils. This is particularly important for a country such as Ireland, where some 16% of the land surface is covered by peat. For Northern Ireland, it has been estimated that the total amount of carbon stored in vegetation is 4.4Mt compared to 386Mt stored within peat and soils. As a result it has become increasingly important to measure and monitor changes in stores of carbon in soils. The conservation and restoration of peat covered areas, although ongoing for many years, has become increasingly important. This is summed up in current EU policy outlined by the European Commission (2012) which seeks to assess the relative contributions of the different inputs and outputs of organic carbon and organic matter to and from soil. Results are presented from the EU-funded Tellus Border Soil Carbon Project (2011 to 2013) which aimed to improve current estimates of carbon in soil and peat across Northern Ireland and the bordering counties of the Republic of Ireland.
Historical reports and previous surveys provide baseline data. To monitor change in peat depth and soil organic carbon, these historical data are integrated with more recently acquired airborne geophysical (radiometric) data and ground-based geochemical data generated by two surveys, the Tellus Project (2004-2007: covering Northern Ireland) and the EU-funded Tellus Border project (2011-2013) covering the six bordering counties of the Republic of Ireland, Donegal, Sligo, Leitrim, Cavan, Monaghan and Louth. The concept being applied is that saturated organic-rich soil and peat attenuate gamma-radiation from underlying soils and rocks. This research uses the degree of spatial correlation (coregionalization) between peat depth, soil organic carbon (SOC) and the attenuation of the radiometric signal to update a limited sampling regime of ground-based measurements with remotely acquired data. To comply with the compositional nature of the SOC data (perturbations of loss on ignition [LOI] data), a compositional data analysis approach is investigated. Contemporaneous ground-based measurements allow corroboration for the updated mapped outputs. This provides a methodology that can be used to improve estimates of soil carbon with minimal impact to sensitive habitats (like peat bogs), but with maximum output of data and knowledge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Within the complex of deep, hypersaline anoxic lakes (DHALs) of the Mediterranean Ridge, we identified a new, unexplored DHAL and named it ‘Lake Kryos’ after a nearby depression. This lake is filled with magnesium chloride (MgCl2)-rich, athalassohaline brine (salinity > 470 practical salinity units), presumably formed by the dissolution of Messinian bischofite. Compared with the DHAL Discovery, it contains elevated concentrations of kosmotropic sodium and sulfate ions, which are capable of reducing the net chaotropicily of MgCl2-rich solutions. The brine of Lake Kryos may therefore be biologically permissive at MgCl2 concentrations previously considered incompatible with life. We characterized the microbiology of the seawater–Kryos brine interface and managed to recover mRNA from the 2.27–3.03 MMgCl2 layer (equivalent to 0.747–0.631 water activity), thereby expanding the established chaotropicity window-for-life. The primary bacterial taxa present there were Kebrit Deep Bacteria 1 candidate division and DHAL-specific group of organisms, distantly related toDesulfohalobium. Two euryarchaeal candidate divisions, Mediterranean Sea Brine Lakes group 1 and halophilic cluster 1, accounted for > 85% of the rRNA-containing archaeal clones derived from the 2.27–3.03 M MgCl2 layer, but were minority community-members in the overlying interface-layers. These findings shed light on the plausibility of life in highly chaotropic environments, geochemical windows for microbial extremophiles, and have implications for habitability elsewhere in the Solar System.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For the computation of limit cycle oscillations (LCO) at transonic speeds, CFD is required to capture the nonlinear flow features present. The Harmonic Balance method provides an effective means for the computation of LCOs and this paper exploits its efficiency to investigate the impact of variability (both structural a nd aerodynamic) on the aeroelastic behaviour of a 2 dof aerofoil. A Harmonic Balance inviscid CFD solver is coupled with the structural equations and is validated against time marching analyses. Polynomial chaos expansions are employed for the stochastic investiga tion as a faster alternative to Monte Carlo analysis. Adaptive sampling is employed when discontinuities are present. Uncertainties in aerodynamic parameters are looked at first followed by the inclusion of structural variability. Results show the nonlinear effect of Mach number and it’s interaction with the structural parameters on supercritical LCOs. The bifurcation boundaries are well captured by the polynomial chaos.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kepler-10b was the first rocky planet detected by the Kepler satellite and confirmed with radial velocity follow-up observations from Keck-HIRES. The mass of the planet was measured with a precision of around 30%, which was
insufficient to constrain models of its internal structure and composition in detail. In addition to Kepler-10b, a second planet transiting the same star with a period of 45 days was statistically validated, but the radial velocities were only
good enough to set an upper limit of 20 M⊕ for the mass of Kepler-10c. To improve the precision on the mass for planet b, the HARPS-N Collaboration decided to observe Kepler-10 intensively with the HARPS-N spectrograph
on the Telescopio Nazionale Galileo on La Palma. In total, 148 high-quality radial-velocity measurements were obtained over two observing seasons. These new data allow us to improve the precision of the mass determination for Kepler-10b to 15%. With a mass of 3.33 ± 0.49 M⊕ and an updated radius of 1.47+0.03 −0.02 R⊕, Kepler-10b has a density of 5.8 ± 0.8 g cm−3, very close to the value predicted by models with the same internal structure and composition as the Earth. We were also able to determine a mass for the 45-day period planet Kepler-10c, with an even better precision of 11%. With a mass of 17.2 ± 1.9 M⊕ and radius of 2.35+0.09 −0.04 R⊕, Kepler-10c has a density of 7.1 ± 1.0 g cm−3. Kepler-10c appears to be the first strong evidence of a class of more massive solid planets with longer orbital periods

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We characterize the planetary system Kepler-101 by performing a combined differential evolution Markov chain Monte Carlo analysisof Kepler data and forty radial velocities obtained with the HARPS-N spectrograph. This system was previously validated and iscomposed of a hot super-Neptune, Kepler-101b, and an Earth-sized planet, Kepler-101c. These two planets orbit the slightly evolvedand metal-rich G-type star in 3.49 and 6.03 days, respectively. With mass Mp = 51.1+5.1−4.7 M⊕, radius Rp = 5.77+0.85−0.79 R⊕, and density ρp = 1.45+0.83 −0.48 g cm−3, Kepler-101b is the first fully characterized super-Neptune, and its density suggests that heavy elements makeup a significant fraction of its interior; more than 60% of its total mass. Kepler-101c has a radius of 1.25+0.19−0.17 R⊕, which implies theabsence of any H/He envelope, but its mass could not be determined because of the relative faintness of the parent star for highly precise radial-velocity measurements (Kp = 13.8) and the limited number of radial velocities. The 1σ upper limit, Mp < 3.8 M⊕, excludes a pure iron composition with a probability of 68.3%. The architecture of the planetary system Kepler-101 − containing aclose-in giant planet and an outer Earth-sized planet with a period ratio slightly larger than the 3:2 resonance − is certainly of interest for scenarios of planet formation and evolution. This system does not follow the previously reported trend that the larger planet has the longer period in the majority of Kepler systems of planet pairs with at least one Neptune-sized or larger planet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermocouples are one of the most popular devices for temperature measurement due to their robustness, ease of manufacture and installation, and low cost. However, when used in certain harsh environments, for example, in combustion systems and engine exhausts, large wire diameters are required, and consequently the measurement bandwidth is reduced. This article discusses a software compensation technique to address the loss of high frequency fluctuations based on measurements from two thermocouples. In particular, a difference equation (DE) approach is proposed and compared with existing methods both in simulation and on experimental test rig data with constant flow velocity. It is found that the DE algorithm, combined with the use of generalized total least squares for parameter identification, provides better performance in terms of time constant estimation without any a priori assumption on the time constant ratios of the thermocouples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work proposes a extends a novel approach to compute tran sonic Limit Cycle Oscillations using high fidelity analysis. CFD based Harmonic Balance methods have proven to be efficient tools to predict periodic phenomena. This paper’s contribution is to present a methodology to determine the unknown frequency of oscillations using an implicit for- mulation of the HB method to accurately capture Limit Cycle Oscillations (LCOs); this is achieved by defining a frequency updating procedure based on a coupled CFD/CSD Harmonic Balance formulation to find the LCO condition. A pitch/plunge aerofoil and respective linear structural models is used to exercise the new method. Results show consistent agreement between the proposed and time-marching methods for both LCO amplitude and frequency.