112 resultados para Image-based control
Resumo:
Current data-intensive image processing applications push traditional embedded architectures to their limits. FPGA based hardware acceleration is a potential solution but the programmability gap and time consuming HDL design flow is significant. The proposed research approach to develop “FPGA based programmable hardware acceleration platform” that uses, large number of Streaming Image processing Processors (SIPPro) potentially addresses these issues. SIPPro is pipelined in-order soft-core processor architecture with specific optimisations for image processing applications. Each SIPPro core uses 1 DSP48, 2 Block RAMs and 370 slice-registers, making the processor as compact as possible whilst maintaining flexibility and programmability. It is area efficient, scalable and high performance softcore architecture capable of delivering 530 MIPS per core using Xilinx Zynq SoC (ZC7Z020-3). To evaluate the feasibility of the proposed architecture, a Traffic Sign Recognition (TSR) algorithm has been prototyped on a Zedboard with the color and morphology operations accelerated using multiple SIPPros. Simulation and experimental results demonstrate that the processing platform is able to achieve a speedup of 15 and 33 times for color filtering and morphology operations respectively, with a significant reduced design effort and time.
Resumo:
AIM: To evaluate the association between various lifestyle factors and achalasia risk.
METHODS: A population-based case-control study was conducted in Northern Ireland, including n= 151 achalasia cases and n = 117 age- and sex-matched controls. Lifestyle factors were assessed via a face-to-face structured interview. The association between achalasia and lifestyle factors was assessed by unconditional logistic regression, to produce odds ratios (OR) and 95% confidence interval (CI).
RESULTS: Individuals who had low-class occupations were at the highest risk of achalasia (OR = 1.88, 95%CI: 1.02-3.45), inferring that high-class occupation holders have a reduced risk of achalasia. A history of foreign travel, a lifestyle factor linked to upper socio-economic class, was also associated with a reduced risk of achalasia (OR = 0.59, 95%CI: 0.35-0.99). Smoking and alcohol consumption carried significantly reduced risks of achalasia, even after adjustment for socio-economic status. The presence of pets in the house was associated with a two-fold increased risk of achalasia (OR = 2.00, 95%CI: 1.17-3.42). No childhood household factors were associated with achalasia risk.
CONCLUSION: Achalasia is a disease of inequality, and individuals from low socio-economic backgrounds are at highest risk. This does not appear to be due to corresponding alcohol and smoking behaviours. An observed positive association between pet ownership and achalasia risk suggests an interaction between endotoxin and viral infection exposure in achalasia aetiology.
Resumo:
This paper presents a tensegrity-based co-operative control algorithm for an aircraft formation. The 6 degrees-of-freedom model of the well-known Aerosonde unmanned aerial vehicle (UAV), is integrated with the model of the tensegrity structure and a decentralised control scheme is proposed. The strategy is shown to be scalable for 2n number of UAVs and is able to maintain a firm geometry whilst allowing flexible shape transformations. Simulation results demonstrate the effectiveness and stability of the proposed tensegrity-based formation control algorithm in 3D.