147 resultados para Genome-Wide Association Study
Resumo:
Epidemiological and genetic data support the notion that schizophrenia and bipolar disorder share genetic risk factors. In our previous genome-wide association (GWA) study, meta-analysis and follow-up (totaling as many as 18,206 cases and 42,536 controls), we identified four loci showing genome-wide significant association with schizophrenia. Here we consider a mixed schizophrenia and bipolar disorder (psychosis) phenotype (addition of 7,469 bipolar disorder cases, 1,535 schizophrenia cases, 333 other psychosis cases, 808 unaffected family members and 46,160 controls). Combined analysis reveals a novel variant at 16p11.2 showing genome-wide significant association (rs4583255[T], OR = 1.08, P = 6.6 × 10−11). The new variant is located within a 593 kb region that substantially increases risk of psychosis when duplicated. In line with the association of the duplication with reduced body mass index (BMI), rs4583255[T] is also associated with lower BMI (P = 0.0039 in the public GIANT consortium dataset; P = 0.00047 in 22,651 additional Icelanders).
Resumo:
Schizophrenia is clinically heterogeneous and multidimensional, but it is not known whether this is due to etiological heterogeneity. Previous studies have not consistently reported association between any specific polymorphisms and clinical features of schizophrenia, and have primarily used case-control designs. We tested for the presence of association between clinical features and polymorphisms in the genes for the serotonin 2A receptor (HT2A), dopamine receptor types 2 and 4, dopamine transporter (SLC6A3), and brain-derived neurotrophic factor (BDNF). Two hundred seventy pedigrees were ascertained on the basis of having two or more members with schizophrenia or poor outcome schizoaffective disorder. Diagnoses were made using a structured interview based on the SCID. All patients were rated on the major symptoms of schizophrenia scale (MSSS), integrating clinical and course features throughout the course of illness. Factor analysis revealed positive, negative, and affective symptom factors. The program QTDT was used to implement a family-based test of association for quantitative traits, controlling for age and sex. We found suggestive evidence of association between the His452Tyr polymorphism in HT2A and affective symptoms (P = 0.02), the 172-bp allele of BDNF and negative symptoms (P = 0.04), and the 480-bp allele in SLC6A3 (= DAT1) and negative symptoms (P = 0.04). As total of 19 alleles were tested, we cannot rule out false positives. However, given prior evidence of involvement of the proteins encoded by these genes in psychopathology, our results suggest that more attention should be focused on the impact of these alleles on clinical features of schizophrenia.
Resumo:
Skin fluorescence (SF) is a non-invasive marker of AGEs and is associated with the long-term complications of diabetes. SF increases with age and is also greater among individuals with diabetes. A familial correlation of SF suggests that genetics may play a role. We therefore performed parallel genome-wide association studies of SF in two cohorts.
Resumo:
In response to genotoxic stress the TP53 tumour suppressor activates target gene expression to induce cell cycle arrest or apoptosis depending on the extent of DNA damage. These canonical activities can be repressed by TP63 in normal stratifying epithelia to maintain proliferative capacity or drive proliferation of squamous cell carcinomas, where TP63 is frequently overexpressed/amplified. Here we use ChIP-sequencing, integrated with microarray analysis, to define the genome-wide interplay between TP53 and TP63 in response to genotoxic stress in normal cells. We reveal that TP53 and TP63 bind to overlapping, but distinct cistromes of sites through utilization of distinctive consensus motifs and that TP53 is constitutively bound to a number of sites. We demonstrate that cisplatin and adriamycin elicit distinct effects on TP53 and TP63 binding events, through which TP53 can induce or repress transcription of an extensive network of genes by direct binding and/or modulation of TP63 activity. Collectively, this results in a global TP53-dependent repression of cell cycle progression, mitosis and DNA damage repair concomitant with activation of anti-proliferative and pro-apoptotic canonical target genes. Further analyses reveal that in the absence of genotoxic stress TP63 plays an important role in maintaining expression of DNA repair genes, loss of which results in defective repair.
Resumo:
Marginal zone B-cell lymphomas (MZLs) have been divided into 3 distinct subtypes (extranodal MZLs of mucosa-associated lymphoid tissue [MALT] type, nodal MZLs, and splenic MZLs). Nevertheless, the relationship between the subtypes is still unclear. We performed a comprehensive analysis of genomic DNA copy number changes in a very large series of MZL cases with the aim of addressing this question. Samples from 218 MZL patients (25 nodal, 57 MALT, 134 splenic, and 2 not better specified MZLs) were analyzed with the Affymetrix Human Mapping 250K SNP arrays, and the data combined with matched gene expression in 33 of 218 cases. MALT lymphoma presented significantly more frequently gains at 3p, 6p, 18p, and del(6q23) (TNFAIP3/A20), whereas splenic MZLs was associated with del(7q31), del(8p). Nodal MZLs did not show statistically significant differences compared with MALT lymphoma while lacking the splenic MZLs-related 7q losses. Gains of 3q and 18q were common to all 3 subtypes. del(8p) was often present together with del(17p) (TP53). Although del(17p) did not determine a worse outcome and del(8p) was only of borderline significance, the presence of both deletions had a highly significant negative impact on the outcome of splenic MZLs.
Resumo:
Aim: Substantial evidence links atherosclerosis and Alzheimer's disease (AD). Apolipoproteins, such as apolipoprotein E, have a causal relationship with both diseases. The rs11136000 SNP within the CLU gene, which encodes clusterin (apolipoprotein J), is also associated with increased AD risk. The aim of this study was to investigate the relationship between plasma clusterin and the rs11136000 genotype in mild cognitive impairment (MCI) and AD.
Methods: Plasma and DNA samples were collected from control, MCI and AD subjects (n=142, 111, 154, respectively). Plasma clusterin was determined by ELISA and DNA samples were genotyped for rs11136000 by TaqMan assay.
Results: Plasma clusterin levels were higher in MCI and AD subjects vs. controls (222.3 +/- 61.3 and 193.6 +/- 58.2 vs. 178.6 +/- 52.3 mu g/ml, respectively; p
Conclusion: This study examined control, MCI and AD subjects, identifying for the first time that plasma clusterin levels were influenced, not only by the presence of AD, but also the transitional stage of MCI, while rs11136000 genotype only influenced plasma clusterin levels in the control group. The increase in plasma clusterin in MCI and AD subjects may occur in response to the disease process and would be predicted to increase binding capacity for amyloid-beta peptides in plasma, enhancing their removal from the brain.
Resumo:
Enhancer-dependent transcription involving the promoter specificity factor σ54 is widely distributed amongst bacteria and commonly associated with cell envelope function. For transcription initiation, σ54-RNA polymerase yields open promoter complexes through its remodelling by cognate AAA+ ATPase activators. Since activators can be bypassed in vitro, bypass transcription in vivo could be a source of emergent gene expression along evolutionary pathways yielding new control networks and transcription patterns. At a single test promoter in vivo bypass transcription was not observed. We now use genome-wide transcription profiling, genome-wide mutagenesis and gene over-expression strategies in Escherichia coli, to (i) scope the range of bypass transcription in vivo and (ii) identify genes which might alter bypass transcription in vivo. We find little evidence for pervasive bypass transcription in vivo with only a small subset of σ54 promoters functioning without activators. Results also suggest no one gene limits bypass transcription in vivo, arguing bypass transcription is strongly kept in check. Promoter sequences subject to repression by σ54 were evident, indicating loss of rpoN (encoding σ54) rather than creating rpoN bypass alleles would be one evolutionary route for new gene expression patterns. Finally, cold-shock promoters showed unusual σ54-dependence in vivo not readily correlated with conventional σ54 binding-sites.
Resumo:
Background: Several cancer-associated loci identified from genome-wide association studies (GWAS) have been associated with risks of multiple cancer sites, suggesting pleiotropic effects. We investigated whether GWAS-identified risk variants for other common cancers are associated with risk of esophageal adenocarcinoma (EA) or its precursor, Barrett's esophagus.
Methods: We examined the associations between risks of EA and Barrett's esophagus and 387 SNPs that have been associated with risks of other cancers, by using genotype imputation data on 2,163 control participants and 3,885 (1,501 EA and 2,384 Barrett's esophagus) case patients from the Barrett's and Esophageal Adenocarcinoma Genetic Susceptibility Study, and investigated effect modification by smoking history, body mass index (BMI), and reflux/heartburn.
Results: After correcting for multiple testing, none of the tested 387 SNPs were statistically significantly associated with risk of EA or Barrett's esophagus. No evidence of effect modification by smoking, BMI, or reflux/heartburn was observed.
Conclusions: Genetic risk variants for common cancers identified from GWAS appear not to be associated with risks of EA or Barrett's esophagus.
Impact: To our knowledge, this is the first investigation of pleiotropic genetic associations with risks of EA and Barrett's esophagus.
Resumo:
Genome-wide association studies (GWAS) have identified several risk variants for late-onset Alzheimer's disease (LOAD)1, 2. These common variants have replicable but small effects on LOAD risk and generally do not have obvious functional effects. Low-frequency coding variants, not detected by GWAS, are predicted to include functional variants with larger effects on risk. To identify low-frequency coding variants with large effects on LOAD risk, we carried out whole-exome sequencing (WES) in 14 large LOAD families and follow-up analyses of the candidate variants in several large LOAD case–control data sets. A rare variant in PLD3 (phospholipase D3; Val232Met) segregated with disease status in two independent families and doubled risk for Alzheimer’s disease in seven independent case–control series with a total of more than 11,000 cases and controls of European descent. Gene-based burden analyses in 4,387 cases and controls of European descent and 302 African American cases and controls, with complete sequence data for PLD3, reveal that several variants in this gene increase risk for Alzheimer’s disease in both populations. PLD3 is highly expressed in brain regions that are vulnerable to Alzheimer’s disease pathology, including hippocampus and cortex, and is expressed at significantly lower levels in neurons from Alzheimer’s disease brains compared to control brains. Overexpression of PLD3 leads to a significant decrease in intracellular amyloid-β precursor protein (APP) and extracellular Aβ42 and Aβ40 (the 42- and 40-residue isoforms of the amyloid-β peptide), and knockdown of PLD3 leads to a significant increase in extracellular Aβ42 and Aβ40. Together, our genetic and functional data indicate that carriers of PLD3 coding variants have a twofold increased risk for LOAD and that PLD3 influences APP processing. This study provides an example of how densely affected families may help to identify rare variants with large effects on risk for disease or other complex traits.
Resumo:
Background. Diabetic nephropathy is a leading cause of end-stage renal disease. Premature mortality is common in patients with nephropathy, largely due to cardiovascular disease. Genetic variants implicated in macrovascular disease are therefore excellent candidates to assess for association with diabetic nephropathy. Recent genome-wide association studies have identified a total of 15 single-nucleotide polymorphisms (SNPs) that are reproducibly associated with cardiovascular disease.
Methods. We initially assessed these SNPs for association in UK type 1 diabetic patients with (cases; n = 597) and without (controls; n = 502) nephropathy using iPLEXTM and TaqMan® assays. Replication studies were performed with DNA genotyped in a total of 2668 individuals from the British Isles.
Results. One SNP (rs4420638) on chromosome 19q13 was found to be significantly associated with diabetic nephropathy before (P = 0.0002) and after correction for multiple testing (Pcorrected = 0.002). We replicated this finding in a phenotypically similar case–control collection comprising 709 individuals with type 1 diabetes (P = 0.002; combined P < 0.00001; OR = 1.54, 95% CI: 1.29–1.84).
Conclusions. Our case–control data suggest that rs4420638, or a functional SNP in linkage disequilibrium with this SNP, may be associated with diabetic nephropathy.
Resumo:
Recently, genome wide association studies (GWAS) have identified a number of single nucleotide polymorphisms (SNPs) as being associated with coronary heart disease (CHD). We estimated the effect of these SNPs on incident CHD, stroke and total mortality in the prospective cohorts of the MORGAM Project. We studied cohorts from Finland, Sweden, France and Northern Ireland (total N=33,282, including 1,436 incident CHD events and 571 incident stroke events). The lead SNPs at seven loci identified thus far and additional SNPs (in total 42) were genotyped using a case-cohort design.We estimated the effect of the SNPs on disease history at baseline, disease events during follow-up and classic risk factors. Multiple testing was taken into account using false discovery rate (FDR) analysis. SNP rs1333049 on chromosome 9p21.3 was associated with both CHD and stroke (HR5=.20, 95% CI 1.08-1.34 for incident CHD events and 1.15, 0.99-1.34 for incident stroke). SNP rs11670734 (19q12) was associated with total mortality and stroke. SNP rs2146807 (10q11.21) showed some association with the fatality of acute coronary event. SNP rs2943634 (2q36.3) was associated with high density lipoprotein (HDL) cholesterol and SNPs rs599839, rs4970834 (1p13.3) and rs17228212 (15q22.23) were associated with non-HDL cholesterol. SNPs rs2943634 (2q36.3) and rs12525353 (6q25.1) were associated with blood pressure. These findings underline the need for replication studies in prospective settings and confirm the candidacy of several SNPs that may play a role in the etiology of cardiovascular disease.
Resumo:
Background: Late Onset Alzheimer's disease (LOAD) is the leading cause of dementia. Recent large genome-wide association studies (GWAS) identified the first strongly supported LOAD susceptibility genes since the discovery of the involvement of APOE in the early 1990s. We have now exploited these GWAS datasets to uncover key LOAD pathophysiological processes. Methodology: We applied a recently developed tool for mining GWAS data for biologically meaningful information to a LOAD GWAS dataset. The principal findings were then tested in an independent GWAS dataset.
Resumo:
We sought to investigate the contribution of extended runs of homozygosity in a genome-wide association dataset of 1,955 Alzheimer's disease cases and 955 elderly screened controls genotyped for 529,205 autosomal single nucleotide polymorphisms. Tracts of homozygosity may mark regions inherited from a common ancestor and could reflect disease loci if observed more frequently in cases than controls. We found no excess of homozygous tracts in Alzheimer's disease cases compared to controls and no individual run of homozygosity showed association to Alzheimer's disease.