131 resultados para ANTHRACYCLINE ANTIBIOTICS
Resumo:
Burkholderia cepacia infection in cystic fibrosis (CF) patients is associated with significant morbidity and mortality, yet no definitive treatment is currently available. This report describes a new approach to treat B. cepacia infection in CF patients, using a combination of amiloride and tobramycin aerosols. Four adults with the typical clinical syndrome of CF were recruited after repeated positive sputum cultures for B. cepacia. Aerosols of amiloride and tobramycin were given three times daily for 1-6 months, and repeated sputum cultures were collected to assess efficacy. Three of the four patients treated with the combined therapy eradicated B. cepacia from their sputum cultures for at least 2 yrs, and there were no adverse events. This novel combination may provide a new therapeutic option for Burkholderia cepacia infections. Furthermore, the strategy of combining antibiotics with ion transport agents may have ramifications for the treatment of other multi-resistant organisms.
Resumo:
Nosocomial transmission of methicillin-resistant Staphylococcus aureus (MRSA) to patients with cystic fibrosis (CF) frequently results in chronic respiratory tract carriage. This is an increasing problem, adds to the burden of glycopeptide antibiotic use in hospitals, and represents a relative contraindication to lung transplantation. The aim of this study was to determine whether it is possible to eradicate MRSA with prolonged oral combination antibiotics, and whether this treatment is associated with improved clinical status. Adult CF patients (six male, one female) with chronic MRSA infection were treated for six months with rifampicin and sodium fusidate. Outcome data were examined for six months before treatment, on treatment and after treatment. The patients had a mean age of 29.3 (standard deviation=6.3) years and FEV(1) of 36.1% (standard deviation=12.7) predicted. The mean duration of MRSA isolation was 31 months. MRSA isolates identified in these patients was of the same lineage as the known endemic strain at the hospital when assessed by pulsed-field gel electrophoresis. Five of the seven had no evidence of MRSA during and for at least six months after rifampicin and sodium fusidate. The proportion of sputum samples positive for MRSA was lower during the six months of treatment (0.13) and after treatment (0.19) compared with before treatment (0.85) (P<0.0001). There was a reduction in the number of days of intravenous antibiotics per six months with 20.3+/-17.6 on treatment compared with 50.7 before treatment and 33.0 after treatment (P=0.02). There was no change in lung function. Gastrointestinal side effects occurred in three, but led to therapy cessation in only one patient. Despite the use of antibiotics with anti-staphylococcal activity for treatment of respiratory exacerbation, MRSA infection persists. MRSA can be eradicated from the sputum of patients with CF and chronic MRSA carriage by using rifampicin and sodium fusidate for six months. This finding was associated with a significant reduction in the duration of intravenous antibiotic treatment during therapy.
Resumo:
As global resistance to conventional antibiotics rises we need to develop new strategies to develop future novel therapeutics. In our quest to design novel anti-infectives and antimicrobials it is of interest to investigate host-pathogen interactions and learn from the complexity of host defense strategies that have evolved over millennia. A myriad of host defense molecules are now known to play a role in protection against human infection. However, the interaction between host and pathogen is recognized to be a multifaceted one, involving countless host proteins, including several families of peptides. The regulation of infection and inflammation by multiple peptide families may represent an evolutionary failsafe in terms of functional degeneracy and emphasizes the significance of host defense in survival. One such family is the neuropeptides (NPs), which are conventionally defined as peptide neurotransmitters but have recently been shown to be pleiotropic molecules that are integral components of the nervous and immune systems. In this review we address the antimicrobial and anti-infective effects of NPs both in vitro and in vivo and discuss their potential therapeutic usefulness in overcoming infectious diseases. With improved understanding of the efficacy of NPs, these molecules could become an important part of our arsenal of weapons in the treatment of infection and inflammation. It is envisaged that targeted therapy approaches that selectively exploit the anti-infective, antimicrobial and immunomodulatory properties of NPs could become useful adjuncts to our current therapeutic modalities. © 2012 Bentham Science Publishers.
Resumo:
OBJECTIVES: To investigate mechanisms of reduced susceptibility to commonly used antibiotics in Prevotella cultured from patients with cystic fibrosis (CF), patients with invasive infection and healthy control subjects and to determine whether genotype can be used to predict phenotypic resistance.
METHODS: The susceptibility of 157 Prevotella isolates to seven antibiotics was compared, with detection of resistance genes (cfxA-type gene, ermF and tetQ), mutations within the CfxA-type β-lactamase and expression of efflux pumps.
RESULTS: Prevotella isolates positive for a cfxA-type gene had higher MICs of amoxicillin and ceftazidime compared with isolates negative for this gene (P < 0.001). A mutation within the CfxA-type β-lactamase (Y239D) was associated with ceftazidime resistance (P = 0.011). The UK CF isolates were 5.3-fold, 2.7-fold and 5.7-fold more likely to harbour ermF compared with the US CF, UK invasive and UK healthy control isolates, respectively. Higher concentrations of azithromycin (P < 0.001) and clindamycin (P < 0.001) were also required to inhibit the growth of the ermF-positive isolates compared with ermF-negative isolates. Furthermore, tetQ-positive Prevotella isolates had higher MICs of tetracycline (P = 0.001) and doxycycline (P < 0.001) compared with tetQ-negative isolates. Prevotella spp. were also shown, for the first time, to express resistance nodulation division (RND)-type efflux pumps.
CONCLUSIONS: This study has demonstrated that Prevotella isolated from various sources harbour a common pool of resistance genes and possess RND-type efflux pumps, which may contribute to tetracycline resistance. The findings indicate that antibiotic resistance is common in Prevotella spp., but the genotypic traits investigated do not reflect phenotypic antibiotic resistance in every instance.
Resumo:
Cystic fibrosis is characterised by chronic polymicrobial infection and inflammation in the airways of patients. Antibiotic treatment regimens, targeting recognised pathogens, have substantially contributed to increased life expectancy of patients with this disease. Although the emergence of antimicrobial resistance and selection of highly antibiotic-resistant bacterial strains is of major concern, the clinical relevance in cystic fibrosis is yet to be defined. Resistance has been identified in recognised cystic fibrosis pathogens and in other bacteria (eg, Prevotella and Streptococcus spp) detected in the airway microbiota, but their role in the pathophysiology of infection and inflammation in chronic lung disease is unclear. Increased antibiotic resistance in cystic fibrosis might be attributed to a range of complex factors including horizontal gene transfer, hypoxia, and biofilm formation. Strategies to manage antimicrobial resistance consist of new antibiotics or localised delivery of antimicrobial agents, iron sequestration, inhibition of quorum-sensing, and resistome analysis. Determination of the contributions of every bacterial species to lung health or disease in cystic fibrosis might also have an important role in the management of antibiotic resistance.
Resumo:
Crystallization of integral membrane proteins is a challenging field and much effort has been invested in optimizing the overexpression and purification steps needed to obtain milligram amounts of pure, stable, monodisperse protein sample for crystallography studies. Our current work involves the structural and functional characterization of the Escherichia coli multidrug resistance transporter MdtM, a member of the major facilitator superfamily (MFS). Here we present a protocol for isolation of MdtM to increase yields of recombinant protein to the milligram quantities necessary for pursuit of structural studies using X-ray crystallography. Purification of MdtM was enhanced by introduction of an elongated His-tag, followed by identification and subsequent removal of chaperonin contamination. For crystallization trials of MdtM, detergent screening using size exclusion chromatography determined that decylmaltoside (DM) was the shortest-chain detergent that maintained the protein in a stable, monodispersed state. Crystallization trials of MdtM performed using the hanging-drop diffusion method with commercially available crystallization screens yielded 3D protein crystals under several different conditions. We contend that the purification protocol described here may be employed for production of high-quality protein of other multidrug efflux members of the MFS, a ubiquitous, physiologically and clinically important class of membrane transporters.
Resumo:
Inhaled antibiotics, such as tobramycin, for the treatment of Pseudomonas aeruginosa pulmonary infections are associated with the increase in life expectancy seen in cystic fibrosis (CF) patients over recent years. However, the effectiveness of this aminoglycoside is still limited by its inability to penetrate the thick DNA-rich mucus in the lungs of these patients, leading to low antibiotic exposure to resident bacteria. In this study, we created novel polymeric nanoparticle (NP) delivery vehicles for tobramycin. Using isothermal titration calorimetry, we showed that tobramycin binds with alginate polymer and, by exploiting this interaction, optimised the production of tobramycin alginate/chitosan NPs. It was established that NP antimicrobial activity against P. aeruginosa PA01 was equivalent to unencapsulated tobramycin (minimum inhibitory concentration 0.625 mg/L). Galleria mellonella was employed as an in vivo model for P. aeruginosa infection. Survival rates of 90% were observed following injection of NPs, inferring low NP toxicity. After infection with P. aeruginosa, we showed that a lethal inoculum was effectively cleared by tobramycin NPs in a dose dependent manner. Crucially, a treatment with NPs prior to infection provided a longer window of antibiotic protection, doubling survival rates from 40% with free tobramycin to 80% with NP treatment. Tobramycin NPs were then functionalised with dornase alfa (recombinant human deoxyribonuclease I, DNase), demonstrating DNA degradation and improved NP penetration of CF sputum. Following incubation with CF sputum, tobramycin NPs both with and without DNase functionalisation, exhibited anti-pseudomonal effects. Overall, this work demonstrates the production of effective antimicrobial NPs, which may have clinical utility as mucus-penetrating tobramycin delivery vehicles, combining two widely used CF therapeutics into a single NP formulation. This nano-antibiotic represents a strategy to overcome the mucus barrier, increase local drug concentrations, avoid systemic adverse effects and improve outcomes for pulmonary infections in CF.
Resumo:
Background: We aimed to determine adherence to inhaled antibiotics, other respiratory medicines and airway clearance and to determine the association between adherence to these treatments and health outcomes (pulmonary exacerbations, lung function and Quality of Life Questionnaire-Bronchiectasis [QOL-B]) in bronchiectasis after 12 months.
Methods: Patients with bronchiectasis prescribed inhaled antibiotics for Pseudomonas aeruginosa infection were recruited into a one-year study. Participants were categorised as " adherent" to medication (medication possession ratio ≥80% using prescription data) or airway clearance (score ≥80% in the Modified Self-Reported Medication-Taking Scale). Pulmonary exacerbations were defined as treatment with a new course of oral or intravenous antibiotics over the one-year study. Spirometry and QOL-B were completed at baseline and 12 months. Associations between adherence to treatment and pulmonary exacerbations, lung function and QOL-B were determined by regression analyses.
Results: Seventy-five participants were recruited. Thirty-five (53%), 39 (53%) and 31 (41%) participants were adherent to inhaled antibiotics, other respiratory medicines, and airway clearance, respectively. Twelve (16%) participants were adherent to all treatments. Participants who were adherent to inhaled antibiotics had significantly fewer exacerbations compared to non-adherent participants (2.6 vs 4, p = 0.00) and adherence to inhaled antibiotics was independently associated with having fewer pulmonary exacerbations (regression co-efficient = -0.51, 95% CI [-0.81,-0.21], p < 0.001). Adherence to airway clearance was associated with lower QOL-B Treatment Burden (regression co-efficient = -15.46, 95% CI [-26.54, -4.37], p < 0.01) and Respiratory Symptoms domain scores (regression co-efficient = -10.77, 95% CI [-21.45; -0.09], p < 0.05). There were no associations between adherence to other respiratory medicines and any of the outcomes tested. Adherence to treatment was not associated with FEV1 % predicted.
Conclusions: Treatment adherence is low in bronchiectasis and affects important health outcomes including pulmonary exacerbations. Adherence should be measured as part of bronchiectasis management and future research should evaluate bronchiectasis-specific adherence strategies.
Resumo:
Despite significant advances in treatment strategies targeting the underlying defect in cystic fibrosis (CF), airway infection remains an important cause of lung disease. In this two-part series, we review recent evidence related to the complexity of CF airway infection, explore data suggesting the relevance of individual microbial species, and discuss current and future treatment options. In Part I, the evidence with respect to the spectrum of bacteria present in the CF airway, known as the lung microbiome is discussed. Subsequently, the current approach to treat methicillin-resistant Staphylococcus aureus, gram-negative bacteria, as well as multiple coinfections is reviewed. Newer molecular techniques have demonstrated that the airway microbiome consists of a large number of microbes, and the balance between microbes, rather than the mere presence of a single species, may be relevant for disease pathophysiology. A better understanding of this complex environment could help define optimal treatment regimens that target pathogens without affecting others. Although relevance of these organisms is unclear, the pathologic consequences of methicillin-resistant S. aureus infection in patients with CF have been recently determined. New strategies for eradication and treatment of both acute and chronic infections are discussed. Pseudomonas aeruginosa plays a prominent role in CF lung disease, butmany other nonfermenting gram-negative bacteria are also found in the CF airway. Many new inhaled antibiotics specifically targeting P. aeruginosa have become available with the hope that they will improve the quality of life for patients. Part I concludes with a discussion of how best to treat patients with multiple coinfections.
Resumo:
Cystic fibrosis (CF) lung disease is characterized by chronic bacterial infection and an unremitting inflammatory response, which are responsible for most of CF morbidity and mortality. The median expected survival has increased from <6 mo in 1940 to >38 yr now. This dramatic improvement, although not great enough, is due to the development of therapies directed at secondary disease pathologies, especially antibiotics. The importance of developing treatments directed against the vigorous inflammatory response was realized in the 1990s. New therapies directed toward the basic defect are now visible on the horizon. However, the impact of these drugs on downstream pathological consequences is unknown. It is likely that antibiotics and anti-inflammatory drugs will remain an important part of the maintenance regimen for CF in the foreseeable future. Current and future antibiotic and anti-inflammatory therapies for CF are reviewed. © 2013 Cold Spring Harbor Laboratory Press; all rights reserved.
Resumo:
Pulmonary exacerbations are important clinical events for cystic fibrosis (CF) patients. Studies assessing the ability of the lung clearance index (LCI) to detect treatment response for pulmonary exacerbations have yielded heterogeneous results. Here, we conduct a retrospective analysis of pooled LCI data to assess treatment with intravenous antibiotics for pulmonary exacerbations and to understand factors explaining the heterogeneous response.
A systematic literature search was performed to identify prospective observational studies. Factors predicting the relative change in LCI and spirometry were evaluated while adjusting for within-study clustering.
Six previously reported studies and one unpublished study, which included 176 pulmonary exacerbations in both paediatric and adult patients, were included. Overall, LCI significantly decreased by 0.40 units (95% CI -0.60 -0.19, p=0.004) or 2.5% following treatment. The relative change in LCI was significantly correlated with the relative change in forced expiratory volume in 1 s (FEV1), but results were discordant in 42.5% of subjects (80 out of 188). Higher (worse) baseline LCI was associated with a greater improvement in LCI (slope: -0.9%, 95% CI -1.0- -0.4%).
LCI response to therapy for pulmonary exacerbations is heterogeneous in CF patients; the overall effect size is small and results are often discordant with FEV1.
Resumo:
The emergence of multidrug-resistant pathogens within the clinical environment is presenting a mounting problem in hospitals worldwide. The 'ESKAPE' pathogens (Enterococcusfaecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter spp.) have been highlighted as a group of causative organisms in a majority of nosocomial infections, presenting a serious health risk due to widespread antimicrobial resistance. The stagnating pipeline of new antibiotics requires alternative approaches to the control and treatment of nosocomial infections. Atmospheric pressure nonthermal plasma (APNTP) is attracting growing interest as an alternative infection control approach within the clinical setting. This study presents a comprehensive bactericidal assessment of an in-house-designed APNTP jet both against biofilms and planktonic bacteria of the ESKAPE pathogens. Standard plate counts and the XTT metabolic assay were used to evaluate the antibacterial effect of APNTP, with both methods demonstrating comparable eradication times. APNTP exhibited rapid antimicrobial activity against all of the ESKAPE pathogens in the planktonic mode of growth and provided efficient and complete eradication of ESKAPE pathogens in the biofilm mode of growth within 360 s, with the exception of A. baumannii where a >4log reduction in biofilm viability was observed. This demonstrates its effectiveness as a bactericidal treatment against these pathogens and further highlights its potential application in the clinical environment for the control of highly antimicrobial-resistant pathogens.
Resumo:
Burkholderia cenocepacia and other members of the Burkholderia cepacia complex (Bcc) are highly multidrug-resistant bacteria that cause severe pulmonary infections in patients with cystic fibrosis. A screen of 2686 compounds derived from marine organisms identified molecules that could synergize with polymyxin B to inhibit growth of B. cenocepacia. At 1 μg/ml, five compounds synergized with polymyxin B and inhibited the growth of B. cenocepacia by more than 70% compared to growth in polymyxin B alone. Follow-up testing revealed that one compound from the screen, the aminocoumarin antibiotic novobiocin, synergized with polymyxin B and colistin against tobramycin-resistant clinical isolates of B. cenocepacia and Burkholderia multivorans. In parallel, we show that novobiocin sensitivity is common among Bcc species and these bacteria are even more susceptible to an alternative aminocoumarin, clorobiocin, which also had an additive effect with polymyxin B against B. cenocepacia. These studies support using aminocoumarin antibiotics to treat Bcc infections and show that synergizers can be found to increase the efficacy of antimicrobial peptides and polymyxins against Bcc bacteria.
Resumo:
Objectives
We aimed to determine if beliefs about treatment, clinical factors and quality of life predicted adherence to treatment in patients with bronchiectasis.
Methods
We recruited participants with confirmed bronchiectasis to a one-year study. We calculated adherence to treatment using medication possession ratios and self-report. Baseline Beliefs about Medicines, clinical, demographic and Quality of Life Questionnaire-Bronchiectasis data were collected. We used logistic regression to determine predictors of adherence to treatment during the subsequent year.
Results
Seventy-five participants were recruited. Beliefs about harm, age and total number of prescribed medications were predictors of adherence to inhaled antibiotics. Concerns about medication, age and Quality of Life Questionnaire-Bronchiectasis Treatment Burden were predictors of adherence to other respiratory medicines. Beliefs about necessity of airway clearance and age were predictors of adherence to airway clearance.
Conclusion
Beliefs about treatment, age, number of prescribed medications and perceived treatment burden predicted subsequent adherence in bronchiectasis, thereby, providing potential targets for future interventions in this population. Clinicians can use these data to identify patients with bronchiectasis who might be at risk of non-adherence i.e. those who are younger, have concerns about medications, who do not think airway clearance is necessary or who are prescribed numerous medications.
Resumo:
The objective of this study was to evaluate the impact of restricting high-risk antibiotics on methicillin-resistant Staphylococcus aureus (MRSA) incidence rates in a hospital setting. A secondary objective was to assess the impact of reducing fluoroquinolone use in the primary-care setting on MRSA incidence in the community. This was an interventional, retrospective, ecological investigation in both hospital and community (January 2006 to June 2010). Segmented regression analysis of interrupted time-series was employed to evaluate the intervention. The restriction of high-risk antibiotics was associated with a significant change in hospital MRSA incidence trend (coefficient=-0·00561, P=0·0057). Analysis showed that the intervention relating to reducing fluoroquinolone use in the community was associated with a significant trend change in MRSA incidence in community (coefficient=-0·00004, P=0·0299). The reduction in high-risk antibiotic use and fluoroquinolone use contributed to both a reduction in incidence rates of MRSA in hospital and community (primary-care) settings.