119 resultados para pulmonary collapse
Resumo:
Cystic fibrosis (CF) is characterised by chronic polymicrobial airway infection and inflammation, which is the major cause of morbidity and mortality. Aggressive use of antimicrobials has been fundamental in increasing the life expectancy of CF patients in recent years. However, enhanced culture and non-culture based detection methods have identified bacteria in the CF lung not previously isolated from CF patients by routine diagnostic microbiology Coupled with increasing antimicrobial resistance, the future of antimicrobial therapy in CF respiratory infection remains challenging. New strategies are needed to address these problems and ensure improvements in life expectancy are maintained. Potential future strategies include the use of new antimicrobial agents and formulations currently in clinical trials, alternative methods of selecting appropriate therapeutic regimens, determination of the pathogenicity of species newly associated with CF and the development of new antimicrobials and adjuvants for use in clinical practice.
Resumo:
The basic helix-loop-helix protein achaete-scute homolog-1 (ASH1) is involved in lung neuroendocrine (NE) differentiation and tumor promotion in SV40 transgenic mice. Constitutive expression of human ASH-1 (hASH1) in mouse lung results in hyperplasia and remodeling that mimics bronchiolization of alveoli (BOA), a potentially premalignant lesion of human lung carcinomas. We now show that this is due to sustained cellular proliferation in terminal bronchioles and resistance to apoptosis. Throughout the airway epithelium the expression of anti-apoptotic Bcl-2 and c-Myb was increased and Akt/mTOR pathway activated. Moreover, the expression of matrix metalloproteases (MMPs) including MMP7 was specifically enhanced at the bronchiolo-alveolar duct junction and BOA suggesting that MMPs play a key role in this microenvironment during remodeling. We also detected MMP7 in 70% of human BOA lesions. Knockdown of hASH1 gene in human lung cancer cells in vitro suppressed growth by increasing apoptosis. We also show that forced expression of hASH1 in immortalized human bronchial epithelial cells decreases apoptosis. We conclude that the impact of hASH1 is not limited to cells with NE phenotype. Rather, constitutive expression of hASH1 in lung epithelium promotes remodeling through multiple pathways that are commonly activated during lung carcinogenesis. The collective results suggest a novel model of BOA formation via hASH1-induced suppression of the apoptotic pathway. Our study yields a promising new preclinical tool for chemoprevention of peripheral lung carcinomas. © 2007 USCAP, Inc All rights reserved.
Resumo:
We present observations of the interacting transient SN 2009ip, from the start of the outburst in October 2012 until the end of the 2012 observing season. The transient reached a peak of $M_V$=-17.7 mag before fading rapidly, with a total integrated luminosity of 1.9$\times10^{49}$ erg over the period of August-December 2012. The optical and near infrared spectra are dominated by narrow emission lines, signaling a dense circumstellar environment, together with multiple components of broad emission and absorption in H and He at velocities between 0.5-1.2$\times10^4$ km s$^{-1}$\. We see no evidence for nucleosynthesized material in SN 2009ip, even in late-time pseudo-nebular spectra. We set a limit of $
Resumo:
Background: Acute lung injury (ALI) is a common devastating clinical syndrome characterized by life-threatening respiratory failure requiring mechanical ventilation and multiple organ failure. There are in vitro, animal studies and pre-clinical data suggesting that statins may be beneficial in ALI. The Hydroxymethylglutaryl-CoA reductase inhibition with simvastatin in Acute lung injury to Reduce Pulmonary dysfunction (HARP-2) trial is a multicenter, prospective, randomized, allocation concealed, double-blind, placebo-controlled clinical trial which aims to test the hypothesis that treatment with simvastatin will improve clinical outcomes in patients with ALI.
Methods/Design: Patients fulfilling the American-European Consensus Conference Definition of ALI will be randomized in a 1: 1 ratio to receive enteral simvastatin 80 mg or placebo once daily for a maximum of 28 days. Allocation to randomized groups will be stratified with respect to hospital of recruitment and vasopressor requirement. Data will be recorded by participating ICUs until hospital discharge, and surviving patients will be followed up by post at 3, 6 and 12 months post randomization. The primary outcome is number of ventilator-free days to day 28. Secondary outcomes are: change in oxygenation index and sequential organ failure assessment score up to day 28, number of non pulmonary organ failure free days to day 28, critical care unit mortality; hospital mortality; 28 day post randomization mortality and 12 month post randomization mortality; health related quality of life at discharge, 3, 6 and 12 months post randomization; length of critical care unit and hospital stay; health service use up to 12 months post-randomization; and safety. A total of 540 patients will be recruited from approximately 35 ICUs in the UK and Ireland. An economic evaluation will be conducted alongside the trial. Plasma and urine samples will be taken up to day 28 to investigate potential mechanisms by which simvastatin might act to improve clinical outcomes.
Resumo:
1. Lough Neagh is one of the most important non-estuarine sites in the British Isles for overwinteringwildfowl. A change in the waterbird assemblage following the winter of 2000/2001 was drivenmainly by a rapid decline in the population of overwintering diving ducks. Sudden and discretechanges in resident as well as migratory waterbirds may suggest an intrinsic cause.
2. We compared the density and biomass of benthic macroinvertebrates, the food of overwinteringdiving ducks, in 2010 (following the diving duck population decline) with values from a baselinesurvey conducted in 1997/1998 (before the decline in diving ducks).
3. The mean total density of macroinvertebrates declined significantly by c. 65% from 15 300 m2in1997/1998 to 5136 m2in 2010. There was a concomitant c. 70% decline in mean macroinvertebratebiomass from 15 667 mg m2to 5112 mg m2. In terms of taxonomic composition, the relativecontribution of Tanypodinae, Glyptotendipes spp . and Tanytarsini declined, while the relativecontribution of Chironomus spp. increased.
4. We describe a shift in chlorophyll-a concentration, a proxy of phytoplankton biomass, in thelargest freshwater lake in the British Isles coincident with a significant reduction in macroinverte-brate density and biomass, with potential implications for ecosystem processes and ecologically andeconomically important consumer populations, including waterbirds and fishes
Resumo:
Acute lung injury is a common, devastating clinical syndrome associated with substantial mortality and morbidity with currently no proven therapeutic interventional strategy to improve patient outcomes. The objectives of this study are to test the potential therapeutic effects of keratinocyte growth factor for patients with acute lung injury on oxygenation and biological indicators of acute inflammation, lung epithelial and endothelial function, protease:antiprotease balance, and lung extracellular matrix degradation and turnover.
Resumo:
Gastro-oesophageal reflux (GOR)-related aspiration is associated with respiratory disease, but the current "gold standard" investigation, the lipid-laden macrophage index (LLMI), is flawed. A specific marker of GOR-related aspiration should originate in the stomach, but not the lung. An assay to detect gastric pepsin in the bronchoalveolar lavage (BAL) of children was developed and validated.
Resumo:
Background: Excessive use of empirical antibiotics is common in critically ill patients. Rapid biomarker-based exclusion of infection may improve antibiotic stewardship in ventilator-acquired pneumonia (VAP). However, successful validation of the usefulness of potential markers in this setting is exceptionally rare.
Objectives: We sought to validate the capacity for specific host inflammatory mediators to exclude pneumonia in patients with suspected VAP.
Methods: A prospective, multicentre, validation study of patients with suspected VAP was conducted in 12 intensive care units. VAP was confirmed following bronchoscopy by culture of a potential pathogen in bronchoalveolar lavage fluid (BALF) at >104 colony forming units per millilitre (cfu/mL). Interleukin-1 beta (IL-1β), IL-8, matrix metalloproteinase-8 (MMP-8), MMP-9 and human neutrophil elastase (HNE) were quantified in BALF. Diagnostic utility was determined for biomarkers individually and in combination.
Results: Paired BALF culture and biomarker results were available for 150 patients. 53 patients (35%) had VAP and 97 (65%) patients formed the non-VAP group. All biomarkers were significantly higher in the VAP group (p<0.001). The area under the receiver operator characteristic curve for IL-1β was 0.81; IL-8, 0.74; MMP-8, 0.76; MMP-9, 0.79 and HNE, 0.78. A combination of IL-1β and IL-8, at the optimal cut-point, excluded VAP with a sensitivity of 100%, a specificity of 44.3% and a post-test probability of 0% (95% CI 0% to 9.2%).
Conclusions: Low BALF IL-1β in combination with IL-8 confidently excludes VAP and could form a rapid biomarker-based rule-out test, with the potential to improve antibiotic stewardship.
Resumo:
Cardiac myxomas are rare primary tumors with varied clinical presentations that may pose a diagnostic challenge. Here, we describe the case of a 21-year-old man with multiple cavitating lung lesions with aspergillosis and underlying right atrial myxoma, who presented with hemoptysis and weight loss. He was successfully treated with right atrial myxoma resection and antifungal agents, with no recurrence or complications after one year of follow-up.
Resumo:
Elafin is a serine protease inhibitor produced by epithelial and immune cells with anti-inflammatory properties. Research has shown that dysregulated protease activity may elicit proteolytic cleavage of elafin, thereby impairing the innate immune function of the protein. The aim of this study was to generate variants of elafin (GG- and QQ-elafin) that exhibit increased protease resistance while retaining the biological properties of wild-type (WT) elafin. Similar to WT-elafin, GG- and QQ-elafin variants retained antiprotease activity and susceptibility to transglutaminase-mediated fibronectin cross-linking. However, in contrast to WT-elafin, GG- and QQ-elafin displayed significantly enhanced resistance to degradation when incubated with bronchoalveolar lavage fluid from patients with cystic fibrosis. Intriguingly, both variants, particularly GG-elafin, demonstrated improved lipopolysaccharide (LPS) neutralization properties in vitro. In addition, GG-elafin showed improved anti-inflammatory activity in a mouse model of LPS-induced acute lung inflammation. Inflammatory cell infiltration into the lung was reduced in lungs of mice treated with GG-elafin, predominantly neutrophilic infiltration. A reduction in MCP-1 levels in GG-elafin treated mice compared to the LPS alone treatment group was also demonstrated. GG-elafin showed increased functionality when compared to WT-elafin and may be of future therapeutic relevance in the treatment of lung diseases characterized by a protease burden.
Resumo:
The impact of rapid climate change on contemporary human populations is of global concern. To contextualize our understanding of human responses to rapid climate change it is necessary to examine the archeological record during past climate transitions. One episode of abrupt climate change has been correlated with societal collapse at the end of the northwestern European Bronze Age. We apply new methods to interrogate archeological and paleoclimate data for this transition in Ireland at a higher level of precision than has previously been possible. We analyze archeological 14C dates to demonstrate dramatic population collapse and present high-precision proxy climate data, analyzed through Bayesian methods, to provide evidence for a rapid climatic transition at ca. 750 calibrated years B.C. Our results demonstrate that this climatic downturn did not initiate population collapse and highlight the nondeterministic nature of human responses to past climate change.
Resumo:
Rationale:
Cathepsin S (CTSS) activity is increased in bronchoalveolar lavage (BAL) fluid from patients with cystic fibrosis (CF). This activity contributes to lung inflammation via degradation of antimicrobial proteins, such as lactoferrin and members of the β-defensin family.
Objectives:
In this study, we investigated the hypothesis that airway epithelial cells are a source of CTSS, and mechanisms underlying CTSS expression in the CF lung.
Methods:
Protease activity was determined using fluorogenic activity assays. Protein and mRNA expression were analyzed by ELISA, Western blotting, and reverse-transcriptase polymerase chain reaction.Measurements and Main Results: In contrast to neutrophil elastase, CTSS activity was detectable in 100% of CF BAL fluid samples from patients without Pseudomonas aeruginosa infection. In this study, we identified epithelial cells as a source of pulmonary CTSS activity with the demonstration that CF airway epithelial cells express and secrete significantly more CTSS than non-CF control cells in the absence of proinflammatory stimulation. Furthermore, levels of the transcription factor IRF-1 correlated with increased levels of its target gene CTSS. We discovered that miR-31, which is decreased in the CF airways, regulates IRF-1 in CF epithelial cells. Treating CF bronchial epithelial cells with a miR-31 mimic decreased IRF-1 protein levels with concomitant knockdown of CTSS expression and secretion.
Conclusions:
The miR-31/IRF-1/CTSS pathway may play a functional role in the pathogenesis of CF lung disease and may open up new avenues for exploration in the search for an effective therapeutic target.