100 resultados para lymphoma
Resumo:
Rare cases of possible materno-fetal transmission of cancer have been recorded over the past 100 years but evidence for a shared cancer clone has been very limited. We provide genetic evidence for mother to offspring transmission, in utero, of a leukemic cell clone. Maternal and infant cancer clones shared the same unique BCR-ABL1 genomic fusion sequence, indicating a shared, single-cell origin. Microsatellite markers in the infant cancer were all of maternal origin. Additionally, the infant, maternally- derived cancer cells had a major deletion on one copy of chromosome 6p that included deletion of HLA alleles that were not inherited by the infant (i.e., foreign to the infant), suggesting a possible mechanism for immune evasion.
Resumo:
ZAP-70, CD38 and IGHV mutations have all been reported to have prognostic impact in chronic lymphocytic leukemia (CLL), both individually and in paired combinations. We aimed to determine whether the combination of all three factors provided more refined prognostic information concerning the treatment-free interval (TFI) from diagnosis. ZAP-70, CD38 and IGHV mutations were evaluated in 142 patients. Combining all three factors, the ZAP-70-/CD38-/Mutated group showed the longest median TFI (62 months, n = 37), ZAP-70+/CD38+/Unmutated cases the shortest (11 months, n = 37) and cases discordant for > or = 1 factor, an intermediate TFI (27 months, n = 68) (p = 0.006). Analysis of discordant cases revealed values that were otherwise masked when measuring single prognostic factors. The presence or absence of cytogenetic abnormalities did not explain the variability among discordant cases. Simultaneous analysis of ZAP-70, CD38 and IGHV mutations in CLL provides more discriminatory prediction of TFI than any factor alone.
Resumo:
Deletion of the TP53 gene on chromosome 17p13.1 is the prognostic factor associated with the shortest survival in CLL. We used array-based comparative genomic hybridisation (arrayCGH) to identify additional DNA copy number changes in peripheral blood samples from 74 LRF CLL4 trial patients, 37 with >or=5% and 37 without TP53-deleted cells. ArrayCGH reliably detected deletions on 17p, including the TP53 locus, in cases with >or=50%TP53-deleted cells detected by fluorescence in situ hybridisation, plus seven additional cases with deleted regions on 17p excluding TP53. Losses on chromosomal regions 18p and/or 20p were found exclusively in cases with >or=5%TP53-deleted cells (por=5%TP53-deleted cases (p=0.02). In particular, amplification of 2p and deletion of 6q were both more frequent. Cases with >20%TP53-deleted cells had the worst prognosis in the LRF CLL4 trial.
Resumo:
PURPOSE: We analyzed patients with hairy cell leukemia (HCL) to achieve a better understanding of the differentiation stage reached by HCL cells and to define the key role of the diversification of cell surface makers, especially CD25 expression. PATIENTS AND METHODS: We analyzed 38 previously untreated patients with HCL to characterize their complete (VDJ(H)) and incomplete (DJ(H)) immunoglobulin (Ig) heavy chain (IgH) rearrangements, including somatic hypermutation pattern and gene segment use. RESULTS: A correlation between immunophenotypic profile and molecular data was seen. All 38 cases showed monoclonal amplifications: VDJ(H) in 97%, DJ(H) in 42%, and both in 39%. Segments from the D(H)3 family were used more in complete compared with incomplete rearrangements (45% vs. 12%; P <.005). Furthermore, comparison between molecular and immunophenotypic characteristics disclosed differences in the expression of CD25 antigen; CD25(-) cases, a phenotype associated with HCL variant, showed complete homology to the germline in 3 of 5 cases (60%), whereas this characteristic was never observed in CD25(+) cases (P <.005). Moreover, V(H)4-34, V(H)1-08, and J(H)3 segments appeared in 2, 1, and 2 CD25(-) cases, respectively, whereas they were absent in all CD25(+) cases. CONCLUSION: These results support that HCL is a heterogeneous entity including subgroups with different molecular characteristics, which reinforces the need for additional studies with a larger number of patients to clarify the real role of gene rearrangements in HCL.
Resumo:
BACKGROUND: PCR detects clonal rearrangements of the Ig gene in lymphoproliferative disorders. False negativity occurs in germinal centre/post-germinal centre lymphomas (GC/PGCLs) as they display a high rate of somatic hypermutation (SHM), which causes primer mismatching when detecting Ig rearrangements by PCR. AIMS: To investigate the degree of SHM in a group of GC/PGCLs and assess the rate of false negativity when using BIOMED-2 PCR when compared with previously published strategies. METHODS: DNA was isolated from snap-frozen tissue from 49 patients with GC/PGCL (23 diffuse large B cell lymphomas (DLBCLs), 26 follicular lymphomas (FLs)) and PCR-amplified for complete (VDJH), incomplete (DJH) and Ig kappa/lambda rearrangements using the BIOMED-2 protocols, and compared with previously published methods using consensus primers. Germinal centre phenotype was defined by immunohistochemistry based on CD10, Bcl-6 and MUM-1. RESULTS: Clonality detection by amplifying Ig rearrangements using BIOMED-2 family-specific primers was considerably higher than that found using consensus primers (74% DLBCL and 96% FL vs 69% DLBCL and 73% FL). Addition of BIOMED-2 DJH rearrangements increased detection of clonality by 22% in DLBCL. SHM was present in VDJH rearrangements from all patients with DLBCL (median (range) 5.7% (2.5-13.5)) and FL (median (range) 5.3% (2.3-11.9)) with a clonal rearrangement. CONCLUSIONS: Use of BIOMED-2 primers has significantly reduced the false negative rate associated with GC/PGCL when compared with consensus primers, and the inclusion of DJH rearrangements represents a potential complementary target for clonality assessment, as SHM is thought not to occur in these types of rearrangements.
Resumo:
In this study, we used IGH sequence analysis to assess the maturational status of Waldenstrom's (WM) macroglobulinemia and its putative precursor immunoglobulin (Ig)-M monoclonal gammopathy of undetermined significance (MGUS). IGH sequence analysis was performed using standard methods in 23 cases (20 WM and 3 IgM MGUS as defined by consensus panel criteria). Waldenstrom's macroglobulinemia cases were characterized by heavily mutated IGH genes (median, 6.3%; range, 3.8%-13.9%) but without intraclonal variation (ICV). IgM MGUS was similarly characterized by somatic hypermutation (median, 7.5%; range, 7%-7.7%), but ICV was evident in 1 of the 3 cases. We would therefore conclude that WM is characterized by somatic hypermutation without ICV, which supports a derivation from postgerminal center/memory B cells. IgM MGUS is also characterized by somatic hypermutation but, in a manner similar to IgA/IgG MGUS, can be associated with ICV, although the significance of this remains unclear.
Resumo:
Purpose: Our purpose in this report was to define genes and pathways dysregulated as a consequence of the t(4;14) in myeloma, and to gain insight into the downstream functional effects that may explain the different prognosis of this subgroup.Experimental Design: Fibroblast growth factor receptor 3 (FGFR3) overexpression, the presence of immunoglobulin heavy chain-multiple myeloma SET domain (IgH-MMSET) fusion products and the identification of t(4;14) breakpoints were determined in a series of myeloma cases. Differentially expressed genes were identified between cases with (n = 55) and without (n = 24) a t(4;14) by using global gene expression analysis.Results: Cases with a t(4;14) have a distinct expression pattern compared with other cases of myeloma. A total of 127 genes were identified as being differentially expressed including MMSET and cyclin D2, which have been previously reported as being associated with this translocation. Other important functional classes of genes include cell signaling, apoptosis and related genes, oncogenes, chromatin structure, and DNA repair genes. Interestingly, 25% of myeloma cases lacking evidence of this translocation had up-regulation of the MMSET transcript to the same level as cases with a translocation.Conclusions: t(4;14) cases form a distinct subgroup of myeloma cases with a unique gene signature that may account for their poor prognosis. A number of non-t(4;14) cases also express MMSET consistent with this gene playing a role in myeloma pathogenesis.
Resumo:
Leukemic B-chronic lymphoproliferative disorders (B-CLPDs) are generally believed to derive from a monoclonal B cell; biclonality has only occasionally been reported. In this study, we have explored the incidence of B-CLPD cases with 2 or more B-cell clones and established both the phenotypic differences between the coexisting clones and the clinicobiologic features of these patients. In total, 53 B-CLPD cases with 2 or more B-cell clones were studied. Presence of 2 or more B-cell clones was suspected by immunophenotype and confirmed by molecular/genetic techniques in leukemic samples (n = 42) and purified B-cell subpopulations (n = 10). Overall, 4.8% of 477 consecutive B-CLPDs had 2 or more B-cell clones, their incidence being especially higher among hairy cell leukemia (3 of 13), large cell lymphoma (2 of 10), and atypical chronic lymphocytic leukemia (CLL) (4 of 29). In most cases the 2 B-cell subsets displayed either different surface immunoglobulin (sIg) light chain (n = 37 of 53) or different levels of the same sIg (n = 9 of 53), usually associated with other phenotypic differences. Compared with monoclonal cases, B-CLL patients with 2 or more clones had lower white blood cell (WBC) and lymphocyte counts, more frequently displayed splenomegaly, and required early treatment. Among these, the cases in which a CLL clone coexisted with a non-CLL clone were older and more often displayed B symptoms, a monoclonal component, and diffuse infiltration of bone marrow and required early treatment more frequently than cases with monoclonal CLL or 2 CLL clones.
Resumo:
We report on a series of Spanish patients with acute lymphoblastic leukaemia in whom the t(12;21) [TEL/AML1] translocation could not be identified with two sensitive techniques: reverse transcript-polymerase chain reaction (RT-PCR) and fluorescence in-situ hybridization (FISH). 101 cases were analysed: 38 children (29 B-cell precursor; nine T-cell precursor) and 63 adults (48 B-cell precursor; 15 T-cell precursor). Specific RT-PCR to amplify the TEL/AML1 fusion transcript was negative in all 101 cases. Moreover, all 38 paediatric samples were also negative by interphase FISH analysis for the presence of the TEL/AML1 fusion. These results suggest the existence of geographic/race variations in the genotype of acute lymphoblastic leukaemia (ALL).