111 resultados para intestine ischemia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We tested the hypothesis that activation of the protective arm of the renin angiotensin system, the angiotensin-converting enzyme 2 (ACE2)/angiotensin-(1-7) [Ang-(1-7)]/Mas receptor axis, corrects the vasoreparative dysfunction typically seen in the CD34(+) cells isolated from diabetic individuals. Peripheral blood CD34(+) cells from patients with diabetes were compared with those of nondiabetic controls. Ang-(1-7) restored impaired migration and nitric oxide bioavailability/cGMP in response to stromal cell-derived factor and resulted in a decrease in NADPH oxidase activity. The survival and proliferation of CD34(+) cells from diabetic individuals were enhanced by Ang-(1-7) in a Mas/phosphatidylinositol 3-kinase (PI3K)/Akt-dependent manner. ACE2 expression was lower, and ACE2 activators xanthenone and diminazine aceturate were less effective in inducing the migration in cells from patients with diabetes compared with controls. Ang-(1-7) overexpression by lentiviral gene modification restored both the in vitro vasoreparative functions of diabetic cells and the in vivo homing efficiency to areas of ischemia. A cohort of patients who remained free of microvascular complications despite having a history of longstanding inadequate glycemic control had higher expression of ACE2/Mas mRNA than patients with diabetes with microvascular complications matched for age, sex, and glycemic control. Thus, ACE2/Ang-(1-7)\Mas pathway activation corrects existing diabetes-induced CD34(+) cell dysfunction and also confers protection from development of this dysfunction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE To assess the association between circulating angiogenic and antiangiogenic factors in the second trimester and risk of preeclampsia in women with type 1 diabetes.

RESEARCH DESIGN AND METHODS Maternal plasma concentrations of placental growth factor (PlGF), soluble fms-like tyrosine kinase 1 (sFlt-1), and soluble endoglin (sEng) were available at 26 weeks of gestation in 540 women with type 1 diabetes enrolled in the Diabetes and Preeclampsia Intervention Trial.

RESULTS Preeclampsia developed in 17% of pregnancies (n = 94). At 26 weeks of gestation, women in whom preeclampsia developed later had significantly lower PlGF (median [interquartile range]: 231 pg/mL [120–423] vs. 365 pg/mL [237–582]; P < 0.001), higher sFlt-1 (1,522 pg/mL [1,108–3,393] vs. 1,193 pg/mL [844–1,630] P < 0.001), and higher sEng (6.2 ng/mL [4.9–7.9] vs. 5.1 ng/mL[(4.3–6.2]; P < 0.001) compared with women who did not have preeclampsia. In addition, the ratio of PlGF to sEng was significantly lower (40 [17–71] vs. 71 [44–114]; P < 0.001) and the ratio of sFlt-1 to PlGF was significantly higher (6.3 [3.4–15.7] vs. 3.1 [1.8–5.8]; P < 0.001) in women who later developed preeclampsia. The addition of the ratio of PlGF to sEng or the ratio of sFlt-1 to PlGF to a logistic model containing established risk factors (area under the curve [AUC], 0.813) significantly improved the predictive value (AUC, 0.850 and 0.846, respectively; P < 0.01) and significantly improved reclassification according to the integrated discrimination improvement index (IDI) (IDI scores 0.086 and 0.065, respectively; P < 0.001).

CONCLUSIONS These data suggest that angiogenic and antiangiogenic factors measured during the second trimester are predictive of preeclampsia in women with type 1 diabetes. The addition of the ratio of PlGF to sEng or the ratio of sFlt-1 to PlGF to established clinical risk factors significantly improves the prediction of preeclampsia in women with type 1 diabetes.

Preeclampsia is characterized by the development of hypertension and new-onset proteinuria during the second half of pregnancy (1,2), leading to increased maternal morbidity and mortality (3). Women with type 1 diabetes are at increased risk for development of preeclampsia during pregnancy, with rates being two-times to four-times higher than that of the background maternity population (4,5). Small advances have come from preventive measures, such as low-dose aspirin in women at high risk (6); however, delivery remains the only effective intervention, and preeclampsia is responsible for up to 15% of preterm births and a consequent increase in infant mortality and morbidity (7).

Although the etiology of preeclampsia remains unclear, abnormal placental vascular remodeling and placental ischemia, together with maternal endothelial dysfunction, hemodynamic changes, and renal pathology, contribute to its pathogenesis (8). In addition, over the past decade accumulating evidence has suggested that an imbalance between angiogenic factors, such as placental growth factor (PlGF), and antiangiogenic factors, such as soluble fms-like tyrosine kinase 1 (sFlt-1) and soluble endoglin (sEng), plays a key role in the pathogenesis of preeclampsia (8,9). In women at low risk (10–13) and women at high risk (14,15), concentrations of angiogenic and antiangiogenic factors are significantly different between women who later develop preeclampsia (lower PlGF, higher sFlt-1, and higher sEng levels) compared with women who do not.

Few studies have specifically focused on circulating angiogenic factors and risk of preeclampsia in women with diabetes, and the results have been conflicting. In a small study, higher sFlt-1 and lower PlGF were reported at the time of delivery in women with diabetes who developed preeclampsia (16). In a longitudinal prospective cohort of pregnant women with diabetes, Yu et al. (17) reported increased sFlt-1 and reduced PlGF in the early third trimester as potential predictors of preeclampsia in women with type 1 diabetes, but they did not show any difference in sEng levels in women with preeclampsia compared with women without preeclampsia. By contrast, Powers et al. (18) reported only increased sEng in the second trimester in women with pregestational diabetes who developed preeclampsia.

The aim of this study, which was significantly larger than the previous studies highlighted, was to assess the association between circulating angiogenic (PlGF) and antiangiogenic (sFlt-1 and sEng) factors and the risk of preeclampsia in women with type 1 diabetes. A further aim was to evaluate the added predictive ability and clinical usefulness of angiogenic factors and established risk factors for preeclampsia risk prediction in women with type 1 diabetes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The combined effect of STZ-diabetes and ionising radiation on the rat retina was investigated. Wistar rats, which had been diabetic for 6 months, were irradiated with a single dose of x-rays (1500 cGy) and the ultrastructural effects evaluated at 4-10 mths post-irradiation. At 4 months post-irradiation, the outer nuclear layer of the retina was greatly reduced in thickness and the photoreceptor outer segments were disorganised and reduced in length. In addition, the nerve fibre layer contained many cytoid bodies and there were many redundant basement membrane tubes throughout the inner retina. By 6 months post-irradiation, the photoreceptor cells were virtually absent, bringing the external limiting membrane into close apposition to the RPE. Throughout large areas of the outer retina, RPE cells were hypertrophic and some had proliferated into the inner retina. In many regions, proliferating retinal capillaries were observed within the RPE layer, and at 8 months post-irradiation, some vessels extended into the inner retina accompanied by RPE cells. At 10 months post-irradiation, the RPE was atrophic and degenerative with retinal glial cells coming into contact with Bruch's membrane. In some areas, the glia which had breached Bruch's membrane had invaded the underlying choroid. Where glial cells contacted the choriocapillaries, the vessels assumed the appearance of retinal vessels with plump endothelia and no fenestrations. This study has described a progressive inner retinal ischemia, with cytoid bodies, capillary non-perfusion and general atrophy of the inner retina intensifying markedly with increasing post-irradiation time.(ABSTRACT TRUNCATED AT 250 WORDS)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Diabetic retinopathy (DR) is a leading cause of visual impairment worldwide. Patients with DR may irreversibly lose sight as a result of the development of diabetic macular edema (DME) and/or proliferative diabetic retinopathy (PDR); retinal blood vessel dysfunction and degeneration plays an essential role in their pathogenesis. Although new treatments have been recently introduced for DME, including intravitreal vascular endothelial growth factor inhibitors (anti-VEGFs) and steroids, a high proportion of patients (~40-50%) do not respond to these therapies. Furthermore, for people with PDR, laser photocoagulation remains a mainstay therapy despite this being an inherently destructive procedure. Endothelial progenitor cells (EPCs) are a low-frequency population of circulating cells known to be recruited to sites of vessel damage and tissue ischemia where they promote vascular healing and re-perfusion. A growing body of evidence suggests that the number and function of EPCs are altered in patients with varying degrees of diabetes duration, metabolic control, and in the presence or absence of DR. Although there are no clear-cut outcomes from these clinical studies, there is mounting evidence that some EPC sub-types may be involved in the pathogenesis of DR and may also serve as biomarkers for disease progression and stratification. Moreover, some EPC sub-types have considerable potential as therapeutic modalities for DME and PDR in the context of cell therapy. This study presents basic clinical concepts of DR and combines this with a general insight on EPCs and their relation to future directions in understanding and treating this important diabetic complication.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: To simultaneously evaluate 14 biomarkers from distinct biological pathways for risk prediction of ischemic stroke, including biomarkers of hemostasis, inflammation, and endothelial activation as well as chemokines and adipocytokines.
Methods and Results: The Prospective Epidemiological Study on Myocardial Infarction (PRIME) is a cohort of 9771 healthy men 50 to 59 years of age who were followed up over 10 years. In a nested case–control study, 95 ischemic stroke cases were matched with 190 controls. After multivariable adjustment for traditional risk factors, fibrinogen (odds ratio [OR], 1.53; 95% confidence interval [CI], 1.03–2.28), E-selectin (OR, 1.76; 95% CI, 1.06–2.93), interferon-γ-inducible-protein-10 (OR, 1.72; 95% CI, 1.06–2.78), resistin (OR, 2.86; 95% CI, 1.30–6.27), and total adiponectin (OR, 1.82; 95% CI, 1.04–3.19) were significantly associated with ischemic stroke. Adding E-selectin and resistin to a traditional risk factor model significantly increased the area under the receiver-operating characteristic curve from 0.679 (95% CI, 0.612–0.745) to 0.785 and 0.788, respectively, and yielded a categorical net reclassification improvement of 29.9% (P=0.001) and 28.4% (P=0.002), respectively. Their simultaneous inclusion in the traditional risk factor model increased the area under the receiver-operating characteristic curve to 0.824 (95% CI, 0.770–0.877) and resulted in an net reclassification improvement of 41.4% (P<0.001). Results were confirmed when using continuous net reclassification improvement.
Conclusion: Among multiple biomarkers from distinct biological pathways, E-selectin and resistin provided incremental and additive value to traditional risk factors in predicting ischemic stroke.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Due to its low digestibility in the small intestine, a major fraction of the polyol isomalt reaches the colon. However, little is known about effects on the intestinal microflora. During two 4-week periods in a double-blind, placebo-controlled, cross-over design, nineteen healthy volunteers consumed a controlled basal diet enriched with either 30 g isomalt or 30 g sucrose daily. Stools were collected at the end of each test phase and various microbiological and luminal markers were analysed. Fermentation characteristics of isomalt were also investigated in vitro. Microbiological analyses of faecal samples indicated a shift of the gut flora towards an increase of bifidobacteria following consumption of the isomalt diet compared with the sucrose diet (P

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ischaemic injury impairs the integrity of the blood-brain barrier (BBB). In this study, we investigated the molecular causes of this defect with regard to the putative correlations among NAD(P)H oxidase, plasminogen-plasmin system components, and matrix metalloproteinases. Hence, the activities of NAD(P)H oxidase, matrix metalloproteinase-2, urokinase-type plasminogen activator (uPA), and tissue-type plasminogen activator (tPA), and superoxide anion levels, were assessed in human brain microvascular endothelial cells (HBMECs) exposed to oxygen-glucose deprivation (OGD) alone or OGD followed by reperfusion (OGD + R). The integrity of an in vitro model of BBB comprising HBMECs and astrocytes was studied by measuring transendothelial electrical resistance and the paracellular flux of albumin. OGD with or without reperfusion (OGD ± R) radically perturbed barrier function while concurrently enhancing uPA, tPA and NAD(P)H oxidase activities and superoxide anion release in HBMECs. Pharmacological inactivation of NAD(P)H oxidase attenuated OGD ± R-mediated BBB damage through modulation of matrix metalloproteinase-2 and tPA, but not uPA activity. Overactivation of NAD(P)H oxidase in HBMECs via cDNA electroporation of its p22-phox subunit confirmed the involvement of tPA in oxidase-mediated BBB disruption. Interestingly, blockade of uPA or uPA receptor preserved normal BBB function by neutralizing both NAD(P)H oxidase and matrix metalloproteinase-2 activities. Hence, selective targeting of uPA after ischaemic strokes may protect cerebral barrier integrity and function by concomitantly attenuating basement membrane degradation and oxidative stress.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ischaemic strokes evoke blood-brain barrier (BBB) disruption and oedema formation through a series of mechanisms involving Rho-kinase activation. Using an animal model of human focal cerebral ischaemia, this study assessed and confirmed the therapeutic potential of Rho-kinase inhibition during the acute phase of stroke by displaying significantly improved functional outcome and reduced cerebral lesion and oedema volumes in fasudil- versus vehicle-treated animals. Analyses of ipsilateral and contralateral brain samples obtained from mice treated with vehicle or fasudil at the onset of reperfusion plus 4 h post-ischaemia or 4 h post-ischaemia alone revealed these benefits to be independent of changes in the activity and expressions of oxidative stress- and tight junction-related parameters. However, closer scrutiny of the same parameters in brain microvascular endothelial cells subjected to oxygen-glucose deprivation ± reperfusion revealed marked increases in prooxidant NADPH oxidase enzyme activity, superoxide anion release and in expressions of antioxidant enzyme catalase and tight junction protein claudin-5. Cotreatment of cells with Y-27632 prevented all of these changes and protected in vitro barrier integrity and function. These findings suggest that inhibition of Rho-kinase after acute ischaemic attacks improves cerebral integrity and function through regulation of endothelial cell oxidative stress and reorganization of intercellular junctions. Inhibition of Rho-kinase (ROCK) activity in a mouse model of human ischaemic stroke significantly improved functional outcome while reducing cerebral lesion and oedema volumes compared to vehicle-treated counterparts. Studies conducted with brain microvascular endothelial cells exposed to OGD ± R in the presence of Y-27632 revealed restoration of intercellular junctions and suppression of prooxidant NADPH oxidase activity as important factors in ROCK inhibition-mediated BBB protection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Impairment of endothelial nitric oxide synthase (eNOS) activity is implicated in the pathogenesis of endothelial dysfunction in many diseases including ischaemic stroke. The modulation of eNOS during and/or following ischaemic injury often represents a futile compensatory mechanism due to a significant decrease in nitric oxide (NO) bioavailability coupled with dramatic increases in the levels of reactive oxygen species that further neutralise NO. However, applications of a number of therapeutic agents alone or in combination have been shown to augment eNOS activity under a variety of pathological conditions by potentiating the expression and/or activity of Akt/eNOS/NO pathway components. The list of these therapeutic agents include NO donors, statins, angiotensin-converting enzyme inhibitors, calcium channel blockers, phosphodiesterase-3 inhibitors, aspirin, dipyridamole and ellagic acid. While most of these compounds exhibit anti-platelet properties and are able to up-regulate eNOS expression in endothelial cells and platelets, others suppress eNOS uncoupling and tetrahydrobiopterin (an eNOS stabiliser) oxidation. As the number of therapeutic molecules that modulate the expression and activity of eNOS increases, further detailed research is required to reveal their mode of action in preventing and/or reversing the endothelial dysfunction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Campylobacter jejuni capsular polysaccharide is important for virulence and often contains a modified heptose. In strain ATCC 700819 (a.k.a. NCTC 11168), the modified heptose branches off from the capsular backbone and is directly exposed to the environment. We reported previously that the enzymes encoded by wcaG, mlghB and mlghC are involved in heptose modification. Here, we show that inactivation of any of these genes leads to production of capsule lacking modified heptose and alters the transcription of other capsule modification genes differentially. Inactivation of mlghB or mlghC, but not of wcaG, decreased susceptibility to bile salts and abrogated invasion of intestinal cells. All mutants showed increased sensitivity to serum killing, especially wcaG::cat, and had defects in colonization and persistence in chicken intestine, but did not show significant differences in adhesion, phagocytosis and intracellular survival in murine macrophages. Together, our findings suggest that the capsular heptose modification pathway contributes to bacterial resistance against gastrointestinal host defenses and supports bacterial persistence via its role in serum resistance and invasion of intestinal cells. Our data further suggest a dynamic regulation of expression of this pathway in the gastrointestinal tract.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phalloidin fluorescence technique, enzyme cytochemistry and immunocytochemistry in conjunction with confocal scanning laser microscopy were used for the first time to describe the nervous and muscle systems of the viviparous monogenean parasite, Gyrodactylus rysavyi inhabiting the gills and skin of the Nile catfish Clarias gariepinus. The body wall muscles are composed of an outer layer of circular fibres, an intermediate layer of paired longitudinal fibres and an inner layer of well-spaced bands of diagonal fibres arranged in two crossed directions. The musculature of the pharynx, intestine, reproductive tract and the most prominent muscles of the haptor were also described. Two characteristic muscular pads were found lying in the anterior region of the haptor in close contact with the hamuli. To each one of these pads, a group of ventral extrinsic muscles was connected. The role of this ventral extrinsic muscle in the body movement was discussed. The mechanism operating the marginal hooklets was also discussed. The central nervous system (CNS) consists of paired cerebral ganglia from which three pairs of longitudinal ventral, lateral and dorsal nerve cords arise. The nerve cords are connected at intervals by many transverse connectives. The CNS is better developed ventrally than dorsally or laterally and it has the highest reactivity for all neuroactive substances examined. Both the central and the peripheral nervous system (PNS) are bilaterally symmetrical. Structural and functional correlates of the neuromusculature of the pharynx, haptor and reproductive tracts were explained. The results implicated acetylcholine, FMRFamide-related peptides (FaRPs) and serotonin in sensory and motor function. The results were compared with those of the monogeneans Macrogyrodactylus clarii and M. congolensis inhabiting the gills and skin respectively of the same host fish C. gariepinus.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Kidney transplantation is one of the most common transplantation operations in the world, accounting for up to 50 % of all transplantation surgeries. To curtail the damage to transplanted organs that is caused by ischemia-reperfusion injury and the recipient's immune system, small interfering RNA (siRNA) technology is being explored. Importantly, the kidney as a whole is a preferential site for non-specific systemic delivery of siRNA. To date, most attempts at siRNA-based therapy for transplantation-related conditions have remained at the in vitro stage, with only a few of them being advanced into animal models. Hydrodynamic intravenous injection of naked or carrier-bound siRNAs is currently the most common route for delivery of therapeutic constructs. To our knowledge, no systematic screens for siRNA targets most relevant for kidney transplantation have been attempted so far. A majority of researchers have arrived at one or another target of interest by analyzing current literature that dissects pathological processes taking place in transplanted organs. A majority of the genes that make up the list of 53 siRNA targets that have been tested in transplantation-related models so far belong to either apoptosis- or immune rejection-centered networks. There is an opportunity for therapeutic siRNA combinations that may be delivered within the same delivery vector or injected at the same time and, by targeting more than one pathway, or by hitting the same pathways within two different key points, will augment the effects of each other.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

SIGNIFICANCE: Heme degradation, which was described more than 30 years ago, is still very actively explored with many novel discoveries on its role in various disease models every year.

RECENT ADVANCES: The heme oxygenases (HO) are metabolic enzymes that utilize NADPH and oxygen to break apart the heme moiety liberating biliverdin (BV), carbon monoxide (CO), and iron. Heme that is derived from hemoproteins can be toxic to the cells and if not removed immediately, it causes cell apoptosis and local inflammation. Elimination of heme from the milieu enables generation of three products that influences numerous metabolic changes in the cell.

CRITICAL ISSUES: CO has profound effects on mitochondria and cellular respiration and other hemoproteins to which it can bind and affect their function, while BV and bilirubin (BR), the substrate and product of BV, reductase, respectively, are potent antioxidants. Sequestration of iron into ferritin and its recycling in the tissues is a part of the homeodynamic processes that control oxidation-reduction in cellular metabolism. Further, heme is an important component of a number of metabolic enzymes, and, therefore, HO-1 plays an important role in the modulation of cellular bioenergetics.

FUTURE DIRECTIONS: In this review, we describe the cross-talk between heme oxygenase-1 (HO-1) and its products with other metabolic pathways. HO-1, which we have labeled Nike, the goddess who personified victory, dictates triumph over pathophysiologic conditions, including diabetes, ischemia, and cancer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are incretin hormones released from intestinal enteroendocrine (EE) cells and have well-established glucose-lowering actions. Lactic acid bacteria (LAB) colonise the human intestine, but it is unknown whether LAB and EE cells interact. Acute co-culture of LAB with EE cells showed that certain LAB strains elicit GLP-1 and GIP secretion (13-194-fold) and upregulate their gene expression. LAB-induced incretin hormone secretion did not appear to involve nutrient mechanisms, nor was there any evidence of cytolysis. Instead PCR array studies implicated signalling agents of the toll-like receptor system, e.g. adaptor protein MyD88 was decreased 23-fold and cell surface antigen CD14 was increased 17-fold. Mechanistic studies found that blockade of MyD88 triggered significant GLP-1 secretion. Furthermore, blocking of CD14 completely attenuated LAB-induced secretion. A recent clinical trial clearly shows that LAB have potential for alleviating type 2 diabetes, and further characterisation of this bioactivity is warranted.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mitochondrial complex I is a large, membrane-bound enzyme central to energy metabolism, and its dysfunction is implicated in cardiovascular and neurodegenerative diseases. An interesting feature of mammalian complex I is the so-called A/D transition, when the idle enzyme spontaneously converts from the active (A) to the de-active, dormant (D) form. The A/D transition plays an important role in tissue response to ischemia and rate of the conversion can be a crucial factor determining outcome of ischemia/reperfusion. Here, we describe the effects of alkali cations on the rate of the D-to-A transition to define whether A/D conversion may be regulated by sodium.At neutral pH (7–7.5) sodium resulted in a clear increase of rates of activation (D-to-A conversion) while other cations had minor effects. The stimulating effect of sodium in this pH range was not caused by an increase in ionic strength. EIPA, an inhibitor of Na+/H+antiporters, decreased the rate of D-to-A conversion and sodium partially eliminated this effect of EIPA. At higher pH (> 8.0), acceleration of the D-to-A conversion by sodium was abolished, and all tested cations decreased the rate of activation, probably due to the effect of ionic strength.The implications of this finding for the mechanism of complex I energy transduction and possible physiological importance of sodium stimulation of the D-to-A conversion at pathophysiological conditions in vivo are discussed.