111 resultados para fibroblast growth factor receptor 1B
Resumo:
The erythroleukaemic cell line TF-1, infected with either the pBabe neo retrovirus or the retrovirus bearing the human erythropoietin (hEpo) gene, developed three growth factor-independent clones. Erythropoietin (Epo), interleukin-3 (IL-3) and granulocyte-macrophage colony stimulating factor (GM-CSF) accelerated the proliferation of these clones. Autonomous growth of the clones was independent of Epo because it was not altered by Epo anti-sense oligonucleotides, nor was Epo detectable in culture supernatants. Cells from the mutant clones could not be induced by Epo to express glycophorin A and haemoglobin synthesis was markedly reduced. Haemin reversed the block in Epo-induced haemoglobin synthesis. Acquisition of growth factor-independence appears to be linked with the selective loss of differentiation capacity. These cells may provide a useful model for the study of the mechanisms involved in leukaemic transformation.
Resumo:
Purpose:This study documents the frequency of insulin-like growth factor-II (IGF-II) loss of imprinting (LOI) in a series of 87 bladder tissues. E-cadherin (CDH1) immunolocalization was also investigated due to the known redistribution of this adherence protein to the cytoplasm following exogenous exposure to IGF-II.
Experimental Design: Informative IGF-II cases were identified following DNA-PCR amplification and subsequent sequencing of the transcribable ApaI RFLP in exon 9 of IGF-II. Similar approaches using primer-specific cDNA templates identified the imprinting status of IGF-II in these informative cases. CDH1cellular localization was assessed on a tissue microarray platform of 114 urothelial carcinoma of the bladder (UCB) cases (70 pTanoninvasive and 44 pT1laminapropria invasive) using the commercially available Novocastra antibody.
Results: IGF-IILOI was evident in 7 of17 (41%) UCB tumors and 4 of11 (36%) tumor-associated normal urothelial samples.Two of four pT1grade 3 tumors, the subject of much debate concerning their suitability for radical cystectomy, showed LOI at the IGF-II locus. In those tumors showing IGF-II LOI, 4 of 7 (57%) displayed concomitant CDH1cytoplasmic staining. In contrast, only 3 of 10 (30%) IGF-IImaintenance ofimprinting tumorshad concomitant CDH1cytoplasmiclocalization. UCB cell lines displaying cytoplasmic CDH1immunolocalization expressed significantly higher levels of IGF-II (CAL29, HT1376, and RT112) compared with RT4, a cell line displaying crisp membranous CDH1staining. Finally, cytoplasmic CDH1staining was an independent predictor of a shorter time to recurrence independent of tumor grade and stage.
Conclusions: We suggest that CDH1 cytoplasmic immunolocalization as a result of increased IGF-II levels identifies those nonmuscle invasive presentations most likely to recur and therefore might benefit from more radical nonconserving bladder surgery
Resumo:
Connective tissue growth factor (CTGF/CCN2) is a 38-kDa secreted protein, a prototypic member of the CCN family, which is up-regulated in many diseases, including atherosclerosis, pulmonary fibrosis, and diabetic nephropathy. We previously showed that CTGF can cause actin disassembly with concurrent down-regulation of the small GTPase Rho A and proposed an integrated signaling network connecting focal adhesion dissolution and actin disassembly with cell polarization and migration. Here, we further delineate the role of CTGF in cell migration and actin disassembly in human mesangial cells, a primary target in the development of renal glomerulosclerosis. The functional response of mesangial cells to treatment with CTGF was associated with the phosphorylation of Akt/protein kinase B (PKB) and resultant phosphorylation of a number of Akt/PKB substrates. Two of these substrates were identified as FKHR and p27(Kip-1). CTGF stimulated the phosphorylation and cytoplasmic translocation of p27(Kip-1) on serine 10. Addition of the PI-3 kinase inhibitor LY294002 abrogated this response; moreover, addition of the Akt/PKB inhibitor interleukin (IL)-6-hydroxymethyl-chiro-inositol-2(R)-2-methyl-3-O-octadecylcarbonate prevented p27(Kip-1) phosphorylation in response to CTGF. Immunocytochemistry revealed that serine 10 phosphorylated p27(Kip-1) colocalized with the ends of actin filaments in cells treated with CTGF. Further investigation of other Akt/PKB sites on p27(Kip-1), revealed that phosphorylation on threonine 157 was necessary for CTGF mediated p27(Kip-1) cytoplasmic localization; mutation of the threonine 157 site prevented cytoplasmic localization, protected against actin disassembly and inhibited cell migration. CTGF also stimulated an increased association between Rho A and p27(Kip-1). Interestingly, this resulted in an increase in phosphorylation of LIM kinase and subsequent phosphorylation of cofilin, suggesting that CTGF mediated p27(Kip-1) activation results in uncoupling of the Rho A/LIM kinase/cofilin pathway. Confirming the central role of Akt/PKB, CTGF-stimulated actin depolymerization only in wild-type mouse embryonic fibroblasts (MEFs) compared to Akt-1/3 (PKB alpha/gamma) knockout MEFs. These data reveal important mechanistic insights into how CTGF may contribute to mesangial cell dysfunction in the diabetic milieu and sheds new light on the proposed role of p27(Kip-1) as a mediator of actin rearrangement.
Resumo:
Connective tissue growth factor [CTGF]/CCN2 is a prototypic member of the CCN family of regulatory proteins. CTGF expression is up-regulated in a number of fibrotic diseases, including diabetic nephropathy, where it is believed to act as a downstream mediator of TGF-beta function; however, the exact mechanisms whereby CTGF mediates its effects remain unclear. Here, we describe the role of CTGF in cell migration and actin disassembly in human mesangial cells, a primary target in the development of renal glomerulosclerosis. The addition of CTGF to primary mesangial cells induced cell migration and cytoskeletal rearrangement but had no effect on cell proliferation. Cytoskeletal rearrangement was associated with a loss of focal adhesions, involving tyrosine dephosphorylation of focal adhesion kinase and paxillin, increased activity of the protein tyrosine phosphatase SHP-2, with a concomitant decrease in RhoA and Rac1 activity. Conversely, Cdc42 activity was increased by CTGF. These functional responses were associated with the phosphorylation and translocation of protein kinase C-zeta to the leading edge of migrating cells. Inhibition of CTGF-induced protein kinase C-zeta activity with a myristolated PKC-zeta inhibitor prevented cell migration. Moreover, transient transfection of human mesangial cells with a PKC-zeta kinase inactive mutant (dominant negative) expression vector also led to a decrease in CTGF-induced migration compared with wild-type. Furthermore, CTGF stimulated phosphorylation and activation of GSK-3beta. These data highlight for the first time an integrated mechanism whereby CTGF regulates cell migration through facilitative actin cytoskeleton disassembly, which is mediated by dephosphorylation of focal adhesion kinase and paxillin, loss of RhoA activity, activation of Cdc42, and phosphorylation of PKC-zeta and GSK-3beta. These changes indicate that the initial stages of CTGF mediated mesangial cell migration are similar to those involved in the process of cell polarization. These findings begin to shed mechanistic light on the renal diabetic milieu, where increased CTGF expression in the glomerulus contributes to cellular dysfunction.
Resumo:
We have previously shown that phospholipase A2 (PLA2) activity is rapidly activated by epidermal growth factor (EGF) and phorbol 12-myristate 13-acetate (PMA) in renal mesangial cells and other cell systems in a manner that suggests a covalent modification of the PLA2 enzyme(s). This PLA2 activity is cytosolic (cPLA2) and is distinct from secretory forms of PLA2, which are also stimulated in mesangial cells in response to cytokines and other agonists. However, longer-term regulation of cPLA2 in renal cells may also occur at the level of gene expression. Cultured rat mesangial cells were used as a model system to test the effects of EGF and PMA on the regulation of cPLA2 gene expression. EGF and PMA both produced sustained increases in cPLA2 mRNA levels, with a parallel increase in enzyme activity over time. Inhibition of protein synthesis by cycloheximide increased basal cPLA2 mRNA accumulation in serum-starved mesangial cells, and the combination of EGF and cycloheximide resulted in super-induction of cPLA2 gene expression compared with EGF alone. Actinomycin D treatment entirely abrogated the effect of EGF on cPLA2 mRNA accumulation. These findings suggest that regulation of cPLA2 is achieved by factors controlling gene transcription and possibly mRNA stability, in addition to previously characterized posttranslational modifications.
Resumo:
We have previously demonstrated that histone deacetylase 7 (HDAC7) expression and splicing play an important role in smooth muscle cell (SMC) differentiation from embryonic stem (ES) cells, but the molecular mechanisms of increased HDAC7 expression during SMC differentiation are currently unknown. In this study, we found that platelet-derived growth factor-BB (PDGF-BB) induced a 3-fold increase in the transcripts of HDAC7 in differentiating ES cells. Importantly, our data also revealed that PDGF-BB regulated HDAC7 expression not through phosphorylation of HDAC7 but through transcriptional activation. By dissecting its promoters with progressive deletion analysis, we identified the sequence between -343 and -292 bp in the 5'-flanking region of the Hdac7 gene promoter as the minimal PDGF-BB-responsive element, which contains one binding site for the transcription factor, specificity protein 1 (Sp1). Mutation of the Sp1 site within this PDGF-BB-responsive element abolished PDGF-BB-induced HDAC7 activity. PDGF-BB treatment enhanced Sp1 binding to the Hdac7 promoter in differentiated SMCs in vivo as demonstrated by the chromatin immunoprecipitation assay. Moreover, we also demonstrated that knockdown of Sp1 abrogated PDGF-BB-induced HDAC7 up-regulation and SMC differentiation gene expression in differentiating ES cells, although enforced expression of Sp1 alone was sufficient to increase the activity of the Hdac7 promoter and expression levels of SMC differentiation genes. Importantly, we further demonstrated that HDAC7 was required for Sp1-induced SMC differentiation of gene expression. Our data suggest that Sp1 plays an important role in the regulation of Hdac7 gene expression in SMC differentiation from ES cells. These findings provide novel molecular insights into the regulation of HDAC7 and enhance our knowledge in SMC differentiation and vessel formation during embryonic development.
Resumo:
PURPOSE:: To evaluate the occurrence of retinal pigment epithelial atrophy in patients with age-related macular degeneration undergoing anti-vascular endothelial growth factor therapy. METHODS:: The study is a retrospective review. Eligible were patients with age-related macular degeneration and choroidal neovascular membranes treated with anti-vascular endothelial growth factor between October 2007 and February 2011; they were followed for >3 months, with fundus photographs and fluorescein angiography at baseline and with autofluorescence and near-infrared autofluorescence images at baseline and follow-up. Demographics, visual acuity, the type of choroidal neovascular membranes, the number of treatments performed, and the length of follow-up were recorded. Autofluorescence and near-infrared autofluorescence images were evaluated for the presence or absence of areas of reduced signal. A multilevel logistic regression model was used to investigate the factors that may be associated with progression of atrophy at follow-up, which was the primary outcome of this study. RESULTS:: Sixty-three patients (72 eyes) were followed for a median of 16 months (range, 3-36 months). Atrophy at baseline was observed in 47% (34/72) of eyes; progression of atrophy occurred in 62% (45/72) of eyes at the last visit. The number of anti-vascular endothelial growth factor injections received was statistically significantly associated with the progression of atrophy at follow-up (odds ratio, 1.35; 95% confidence interval, 1.05-1.73; P = 0.02). CONCLUSION:: Atrophy was frequently observed in patients with age-related macular degeneration and choroidal neovascular membranes undergoing anti-vascular endothelial growth factor therapy.
Resumo:
PURPOSE. Vascular endothelial growth factor (VEGF)-A and placental growth factor (PIGF) are members of a large group of homologous peptides identified as the VEGF family. Although VEGF-A is known to act as a potent angiogenic peptide in the retina, the vasoactive function of PIGF in this tissue is less well defined. This study has sought to elucidate the expression patterns and modulatory role of these growth factors during retinal vascular development and hyaloid regression in the neonatal mouse. METHODS. C57BL6J mice were killed at postnatal days (P)1, P3, P5, P7, P9, and P11. The eyes were enucleated and processed for in situ hybridization and immunocytochemistry and the retinas extracted for total protein or RNA. Separate groups of neonatal mice were also injected intraperitoneally daily from P2 through P9 with either VEGF-neutralizing antibody, PIGF-neutralizing antibody, isotype immunoglobulin (Ig)-G, or phosphate-buffered saline (PBS). The mice were then perfused with fluorescein isothiocyanate (FITC)-dextran, and the eyes were subsequently embedded in paraffin wax or flat mounted. RESULTS. Quantitative (real-time) reverse transcription-polymerase chain reaction (RT-PCR) demonstrated similar expression patterns of VEGF-A and PIGF mRNA during neonatal retinal development, although the fluctuation between time periods was greater overall for VEGF-A. The localization of VEGF-A and PIGF in the retina, as revealed by in situ hybridization and immunohistochemistry, was also similar. Neutralization of VEGF-A caused a significant reduction in the hyaloid and retinal vasculature, whereas PIGF antibody treatment caused a marked persistence of the hyaloid without significantly affecting retinal vascular development. CONCLUSIONS. Although having similar expression patterns in the retina, these growth factors appear to have distinct modulatory influences during normal retinal vascular development and hyaloid regression.
Resumo:
Insulin-like growth factor binding protein (IGFBP)-3 modulates vascular development by regulating endothelial progenitor cell (EPC) behavior, specifically stimulating EPC cell migration. This study was undertaken to investigate the mechanism of IGFBP-3 effects on EPC function and how IGFBP-3 mediates cytoprotection following vascular injury.
Resumo:
AIMS/HYPOTHESIS: Premature death of retinal pericytes is a pathophysiological hallmark of diabetic retinopathy. Among the mechanisms proposed for pericyte death is exposure to AGE, which accumulate during diabetes. The current study used an in vitro model, whereby retinal pericytes were exposed to AGE-modified substrate and the mechanisms underlying pericyte death explored. METHODS: Pericytes were isolated from bovine retinal capillaries and propagated on AGE-modified basement membrane (BM) extract or non-modified native BM. The extent of AGE modification was analysed. Proliferative responses of retinal pericytes propagated on AGE-modified BM were investigated using a 5-bromo-2-deoxy-uridine-based assay. The effect of extrinsically added platelet-derived growth factor (PDGF) isoforms on these proliferative responses was also analysed alongside mRNA expression of the PDGF receptors. Apoptotic death of retinal pericytes grown on AGE-modified BM was investigated using terminal deoxynucleotidyl transferase-mediated dUTP nick end-labelling labelling, mitochondrial membrane depolarisation and by morphological assessment. We also measured both the ability of PDGF to reverse Akt dephosphorylation that was mediated by AGE-modified BM, and increased pericyte apoptosis. RESULTS: Retinal pericytes exposed to AGE-modified BM showed reduced proliferative responses in comparison to controls (p
Resumo:
Finding a suitable cell source for endothelial cells (ECs) for cardiovascular regeneration is a challenging issue for regenerative medicine. In the paper we describe a novel mechanism regulating induced pluripotent stem cells (iPSC) differentiation into ECs, with a particular focus on miRNAs and their targets. We first established a protocol using collagen IV and VEGF to drive the functional differentiation of iPSCs into ECs and compared the miRNA signature of differentiated and undifferentiated cells. Among the miRNAs overrepresented in differentiated cells, we focused on microRNA-21 (miR-21) and studied its role in iPSC differentiation. Overexpression of miR-21 in pre-differentiated iPSCs induced EC marker upregulation and in vitro and in vivo capillary formation; accordingly, inhibition of miR-21 produced the opposite effects. Importantly, miR-21 overexpression increased TGF-β2 mRNA and secreted protein level, consistent with the strong upregulation of TGF-β2 during iPSC differentiation. Indeed, treatment of iPSCs with TGFβ-2 induced EC marker expression and in vitro tube formation. Inhibition of SMAD3, a downstream effector of TGFβ-2, strongly decreased VE-cadherin expression. Furthermore, TGFβ-2 neutralization and knockdown inhibited miR-21-induced EC marker expression. Finally, we confirmed the PTEN/Akt pathway as a direct target of miR-21 and we showed that PTEN knockdown is required for miR-21 mediated endothelial differentiation. In conclusion, we elucidated a novel signaling pathway that promotes the differentiation of iPSC into functional ECs suitable for regenerative medicine applications.