130 resultados para emergent technologies
Resumo:
Ready-to-eat (RTE) foods can be readily consumed with minimum or without any further preparation; their processing is complex—involving thorough decontamination processes— due to their composition of mixed ingredients. Compared with conventional preservation technologies, novel processing technologies can enhance the safety and quality of these complex products by reducing the risk of pathogens and/ or by preserving related health-promoting compounds. These novel technologies can be divided into two categories: thermal and non-thermal. As a non-thermal treatment, High Pressure Processing is a very promising novel methodology that can be used even in the already packaged RTE foods. A new “volumetric” microwave heating technology is an interesting cooking and decontamination method directly applied to foods. Cold Plasma technology is a potential substitute of chlorine washing in fresh vegetable decontamination. Ohmic heating is a heating method applicable to viscous products but also to meat products. Producers of RTE foods have to deal with challenging decisions starting from the ingredients suppliers to the distribution chain. They have to take into account not only the cost factor but also the benefits and food products’ safety and quality. Novel processing technologies can be a valuable yet large investment for several SME food manufacturers, but they need support data to be able to make adequate decisions. Within the FP7 Cooperation funded by the European Commission, the STARTEC project aims to develop an IT decision supporting tool to help food business operators in their risk assessment and future decision making when producing RTE foods with or without novel preservation technologies.
Resumo:
We review the physics of hybrid optomechanical systems consisting of a mechanical oscillator interacting with both a radiation mode and an additional matterlike system. We concentrate on the cases embodied by either a single or a multi-atom system (a Bose-Einstein condensate, in particular) and discuss a wide range of physical effects, from passive mechanical cooling to the set-up of multipartite entanglement, from optomechanical nonlocality to the achievement of non-classical states of a single mechanical mode. The reviewed material showcases the viability of hybridised cavity optomechanical systems as basic building blocks for quantum communication networks and quantum state-engineering devices, possibly empowered by the use of quantum and optimal control techniques. The results that we discuss are instrumental to the promotion of hybrid optomechanical devices as promising experimental platforms for the study of nonclassicality at the genuine mesoscopic level.
Resumo:
Sonoluminescence (SL) involves the conversion of mechanical [ultra]sound energy into light. Whilst the phenomenon is invariably inefficient, typically converting just 10-4 of the incident acoustic energy into photons, it is nonetheless extraordinary, as the resultant energy density of the emergent photons exceeds that of the ultrasonic driving field by a factor of some 10 12. Sonoluminescence has specific [as yet untapped] advantages in that it can be effected at remote locations in an essentially wireless format. The only [usual] requirement is energy transduction via the violent oscillation of microscopic bubbles within the propagating medium. The dependence of sonoluminescent output on the generating sound field's parameters, such as pulse duration, duty cycle, and position within the field, have been observed and measured previously, and several relevant aspects are discussed presently. We also extrapolate the logic from a recently published analysis relating to the ensuing dynamics of bubble 'clouds' that have been stimulated by ultrasound. Here, the intention was to develop a relevant [yet computationally simplistic] model that captured the essential physical qualities expected from real sonoluminescent microbubble clouds. We focused on the inferred temporal characteristics of SL light output from a population of such bubbles, subjected to intermediate [0.5-2MPa] ultrasonic pressures. Finally, whilst direct applications for sonoluminescent light output are thought unlikely in the main, we proceed to frame the state-of-the- art against several presently existing technologies that could form adjunct approaches with distinct potential for enhancing present sonoluminescent light output that may prove useful in real world [biomedical] applications.