114 resultados para copper plating


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structural and magnetic properties of F16CuPc thin films and powder, including x-ray diffraction (XRD), superconducting quantum interference device (SQUID) magnetometry, and theoretical modelling of exchange interactions are reported. Analysis of XRD from films, with thickness ranging between 100 and 160 nm, deposited onto Kapton and a perylene-3,4,9,10-tetracarboxylic-3,4,9,10-dianhydride (PTCDA) interlayer shows that the stacking angle (defined in the text) of the film is independent of the thickness, but that the texture is modified by both film thickness and substrate chemistry. The SQUID measurements suggest that all samples are paramagnetic, a result that is confirmed by our theoretical modelling including density functional theory calculations of one-dimensional molecular chains and Green's function perturbation theory calculations for a molecular dimer. By investigating theoretically a range of different geometries, we predict that the maximum possible exchange interaction between F16CuPc molecules is twice as large as that in unfluorinated copper-phthalocyanine (CuPc). This difference arises from the smaller intermolecular spacing in F16CuPc. Our density functional theory calculation for isolated F16CuPc molecule also shows that the energy levels of Kohn-Sham orbitals are rigidly shifted similar to 1 eV lower in F16CuPc compared to CuPc without a significant modification of the intramolecular spin physics, and that therefore the two molecules provide a suitable platform for independently varying magnetism and charge transport. 

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanostructure and molecular orientation play a crucial role in determining the functionality of organic thin films. In practical devices, such as organic solar cells consisting of donor-acceptor mixtures, crystallinity is poor and these qualities cannot be readily determined by conventional diffraction techniques, while common microscopy only reveals surface morphology. Using a simple nondestructive technique, namely, continuous-wave electron paramagnetic resonance spectroscopy, which exploits the well-understood angular dependence of the g-factor and hyperfine tensors, we show that in the solar cell blend of C-60 and copper phthalocyanine (CuPc)-for which X-ray diffraction gives no information-the CuPc, and by implication the C-60, molecules form nanoclusters, with the planes of the CuPc molecules oriented perpendicular to the film surface. This information demonstrates that the current nanostructure in CuPc:C-60 solar cells is far from optimal and suggests that their efficiency could be considerably increased by alternative film growth algorithms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The flexibility of the metal-organic framework Cu-2(OH)(C8H3O7S)(H2O)center dot 2H(2)O (Cu-SIP-3) toward reversible single-crystal to single-crystal transformations is demonstrated using in situ diffraction methods at variable temperature. At temperatures below a dehydration-induced phase transition (T < 370 K) the structure is confirmed as being hydrated. In the temperature range where the transition takes place (370 K < T < 405 K) no discrete, sharp Bragg peaks can be seen in the single-crystal X-ray diffraction pattern, indicating significant loss of long-range order. At temperatures higher than 405 K, the Bragg peaks return and the structure can be refined as dehydrated Cu-SIP-3. The loss of guest water molecules can be followed at temperatures below the phase transition giving insight into the mechanism of the dehydration. Addition of nitric oxide gas to the material above the gating opening pressure of 275 mbar also leads to loss of Bragg scattering in the diffraction pattern.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have developed a series of 1-alkyl-3-methylimidazolium tetrachlorocuprate(II) and dibromoargentate(I) ionic liquids with enhanced antimicrobial activity when compared with 1-alkyl-3-methylimidazolium chloride ionic liquids. These new ionic liquids proved to be effective against a range of pathogenic bacteria and fungi.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The metallo-phthalocyanines (MPcs) are an interesting group of organic semiconductor materials for applications such as large area solar cells due to their optoelectronic properties coupled with the possibility of easily and cheaply fabricating thin films of MPcs [1, 2]. As for organic semiconductors in general, many of the interesting properties of the MPcs such as magnetism, light absorption and charge transport, are highly anisotropic [2, 3]. To maximise the efficiency of a device based on these materials it is therefore important to study their molecular orientation in films and to assess the influence of different growth conditions and substrate treatments.
X-ray diffraction is a well established and powerful technique for studying texture (and hence molecular orientation) in crystalline materials, but it cannot provide any information about amorphous or nanocrystalline films. In electron paramagnetic resonance (EPR) spectroscopy the signal comes from the spin of unpaired electrons in the material. This technique therefore does not require the sample to be crystalline. It works for any sample with paramagnetic centres such as the MPcs where the unpaired electrons are contributed by the metal. In this paper we present a continuous-wave X-band EPR study using the anisotropy of the EPR spectrum of CuPc [4] to determine the orientation effects in different types of CuPc films. From these measurements we gain insight into the molecular arrangement of films with different spin concentrations, and apply our technique to the study of molecular orientation in photovoltaic cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Organic semiconductors have already found commercial applications in for example displays with organic light-emitting diodes (OLEDs) and great advances are also being made in other areas, such as organic field-effect transistors and organic solar cells. [1] The organic semicondutor group of materials known as metal phthalocyanines (MPc’s) is interesting for applications such as large area solar cells due to their optoelectronic properties coupled with the possibility of easily and cheaply fabricating thin films of MPc’s. [1, 2]

Many of the properties of organic semiconductors, such as magnetism, light absorption and charge transport, show orientational anisotropy. [2, 3] To maximise the efficiency of a device based on these materials it is therefore important to study the molecular orientation in films and to assess the influence of different growth conditions and substrate treatments. X-ray diffraction is a well established and powerful technique for studying texture (and hence molecular orientation)_in crystalline materials, but cannot provide any information about amorphous or nanocrystalline films. In this paper we present a continuous wave X-band EPR study using the anisotropy of the CuPc EPR spectrum [4] to determine the orientation effects in different types of CuPc films. From these measurements we also gain insight into the molecular arrangement of films of CuPc mixed with the isomorphous H2Pc and with C60 in films typical of real solar cell systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Copper/TEMPO catalysts can be used to prepare nitriles from aldehydes or alcohols using aqueous ammonia. Readily accessible methods were developed that enable standard glassware to be used with air as the source of O2. It was further shown that, at higher temperatures in a pressurised reactor under limiting oxygen conditions (8% O2), catalyst loadings of 1 mol% could be employed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Land application of wastes from concentrated animal feeding operations results in accumulation of copper (Cu) and antimicrobials in terrestrial systems. Interaction between Cu and antimicrobials may change Cu speciation in soil solution, and affect Cu bioavailability and toxicity. In this study, earthworms were exposed to quartz sand percolated with different concentrations of Cu and ciprofloxacin (CIP). Copper uptake by earthworms, its subcellular partition, and toxicity were studied. An increase in the applied CIP decreased the free Cu ion concentration in external solution and mortalities of earthworm, while Cu contents in earthworms increased. Copper and CIP in earthworms were fractionated into five fractions: a granular fraction (D), a fraction consisting of tissue fragments, cell membranes, and intact cells (E), a microsomal fraction (F), a denatured proteins fraction (G), and a heat-stable proteins fraction (H). Most of the CIP in earthworms was in fraction H. Copper was redistributed from the metal-sensitive fraction E to fractions D, F, G, and H with increasing CIP concentration. These results challenge the free ion activity model and suggested that Cu may be partly taken up as Cu-CIP complexes in earthworms, changing the bioavailability, subcellular distribution, and toxicity of Cu to earthworms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper a multiscale simulation study was carried out in order to gain in-depth understanding of machining mechanism of nanometric cutting of single crystal copper. This study was focused on the effects of crystal orientation and cutting direction on the attainable machined surface quality. The machining mechanics was analyzed through cutting forces, chip formation morphology, generation and evolution of defects and residual stresses on the machined surface. The simulation results showed that the crystal orientation of the copper material and the cutting direction significantly influenced the deformation mechanism of the workpiece materials during the machining process. Relatively lower cutting forces were experienced while selecting crystal orientation family {1 1 1}. Dislocation movements were found to concentrate in front of the cutting chip while cutting on the (1 1 1) surface along the View the MathML source cutting direction thus, resulting in much smaller damaged layer on the machined surface, compared to other orientations. This crystal orientation and cutting direction therefore recommended for nanometric cutting of single crystal copper in practical applications. A nano-scratching experiment was performed to validate the above findings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Cu(I)/9-azabicyclo[3.3.1]nonan-3-one N-oxyl (ketoABNO) aerobic catalyst system is highly effective for the oxidation of secondary alcohols, including unactivated aliphatic substrates. The effects of pressure and gas composition on catalyst performance are examined. The radical can be employed at low loadings and is also amenable to immobilisation on to solid supports.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With most recent studies being focused on the development of
advanced chemical adsorbents, this paper investigates the possibility of
using two natural low-cost materials for selective adsorption. Multiadsorbent
systems containing tea waste and dolomite have been tested for
their effectiveness in the removal of copper and methylene blue from
aqueous solutions. The effects of contact time, solution pH and
adsorption isotherms on the sorption behaviour were investigated. The
Langmuir and Freundlich isotherms adequately described the adsorption of
copper ions and methylene blue by both materials in different systems.
The highest adsorption capacities for Cu and MB were calculated as 237.7
at pH 4.5 and 150.44 mg.g‒1 at pH 7 for DO and TW+DO respectively. Tea
waste (TW) and dolomite (DO) were characterized by Fourier transform
infrared spectroscopy, scanning electron microscopy and Energy dispersive
X-ray analysis. The removal of Cu and MB by dolomite was mainly via
surface complexation while physisorption was responsible for most of the
Cu and MB adsorption onto tea waste. Identifying the fundamental mechanisms and behaviour is key to the development of practical multi-adsorbent packed columns.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Disease-, age-, and gender-associated changes in brain copper, iron, and zinc were assessed in postmortem neocortical tissue (Brodmann area 7) from patients with moderate Alzheimer's disease (AD) (n = 14), severe AD (n = 28), dementia with Lewy bodies (n = 15), and normal age-matched control subjects (n = 26). Copper was lower (20%; p < 0.001) and iron higher (10–16%; p < 0.001) in severe AD compared with controls. Intriguingly significant Group*Age interactions were observed for both copper and iron, suggesting gradual age-associated decline of these metals in healthy non-cognitively impaired individuals. Zinc was unaffected in any disease pathologies and no age-associated changes were apparent. Age-associated changes in brain elements warrant further investigation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The wettability and hydrophobicity of super-hydrophobic (SH) meshes is greatly influenced by their topographic structures, chemical composition and coating process. In this study, the properties of copper and stainless steel meshes, coated with super-hydrophobic electrolessly deposited silver were investigated. A new method to test the pressure resistance of super-hydrophobic mesh was applied to avoid any deformation of mesh. Results showed that SH copper mesh and SH stainless steel meshes with the same pore size have almost the same contact angle and the same hydrophobicity. SH copper mesh with a pore size of 122 μm can resist water pressure of 4900 Pa and a decrease of pore size of mesh can increase the pressure resistance of SH copper mesh. The SH copper mesh modified with 0.1 M HS(CH2)10COOH solution in ethanol has a controllable water permeation property by simply adjusting the pH of water solution. SH copper mesh shows super-oleophilicity with organic solvents and so with a water contact angle of 0° and it can be an effective tool for organic solvents/water separation. The separation efficiency of SH copper mesh for separating mixtures of organic solvent and water can be as high as 99.8%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mineral concentrations in cereals are important for human health, especially for individuals who consume a cereal subsistence diet. A number of elements, such as zinc, are required within the diet, while some elements are toxic to humans, for example arsenic. In this study we carry out genome-wide association (GWA) mapping of grain concentrations of arsenic, copper, molybdenum and zinc in brown rice using an established rice diversity panel of,300 accessions and 36.9 k single nucleotide polymorphisms (SNPs). The study was performed across five environments: one field site in Bangladesh, one in China and two in the US, with one of the US sites repeated over two years. GWA mapping on the whole dataset and on separate subpopulations of rice revealed a large number of loci significantly associated with variation in grain arsenic, copper, molybdenum and zinc. Seventeen of these loci were detected in data obtained from grain cultivated in more than one field location, and six co-localise with previously identified quantitative trait loci. Additionally, a number of candidate genes for the uptake or transport of these elements were located near significantly associated SNPs (within 200 kb, the estimated global linkage disequilibrium previously employed in this rice panel). This analysis highlights a number of genomic regions and candidate genes for further analysis as well as the challenges faced when mapping environmentally-variable traits in a highly genetically structured diversity panel.