124 resultados para Vehicle maintenance.
Resumo:
Process monitoring and Predictive Maintenance (PdM) are gaining increasing attention in most manufacturing environments as a means of reducing maintenance related costs and downtime. This is especially true in industries that are data intensive such as semiconductor manufacturing. In this paper an adaptive PdM based flexible maintenance scheduling decision support system, which pays particular attention to associated opportunity and risk costs, is presented. The proposed system, which employs Machine Learning and regularized regression methods, exploits new information as it becomes available from newly processed components to refine remaining useful life estimates and associated costs and risks. The system has been validated on a real industrial dataset related to an Ion Beam Etching process for semiconductor manufacturing.
Resumo:
Best concrete research paper by a student - Research has shown that the cost of managing structures puts high strain on the infrastructure budget, with
estimates of over 50% of the European construction budget being dedicated to repair and maintenance. If reinforced concrete
structures are not suitably designed and adequately maintained, their service life is compromised, resulting in the full economic
value of the investment not realised. The issue is more prevalent in coastal structures as a result of combinations of aggressive
actions, such as those caused by chlorides, sulphates and cyclic freezing and thawing.
It is a common practice nowadays to ensure durability of reinforced concrete structures by specifying a concrete mix and a
nominal cover at the design stage to cater for the exposure environment. This in theory should produce the performance required
to achieve a specified service life. Although the European Standard EN 206-1 specifies variations in the exposure environment,
it does not take into account the macro and micro climates surrounding structures, which have a significant influence on their
performance and service life. Therefore, in order to construct structures which will perform satisfactorily in different exposure
environments, the following two aspects need to be developed: a performance based specification to supplement EN 206-1
which will outline the expected performance of the structure in a given environment; and a simple yet transferrable procedure
for assessing the performance of structures in service termed KPI Theory. This will allow the asset managers not only to design
structures for the intended service life, but also to take informed maintenance decisions should the performance in service fall
short of what was specified. This paper aims to discuss this further.
Resumo:
The small leucine-rich repeat proteoglycan (SLRPs) family of proteins currently consists of five classes, based on their structural composition and chromosomal location. As biologically active components of the extracellular matrix (ECM), SLRPs were known to bind to various collagens, having a role in regulating fibril assembly, organization and degradation. More recently, as a function of their diverse proteins cores and glycosaminoglycan side chains, SLRPs have been shown to be able to bind various cell surface receptors, growth factors, cytokines and other ECM components resulting in the ability to influence various cellular functions. Their involvement in several signaling pathways such as Wnt, transforming growth factor-β and epidermal growth factor receptor also highlights their role as matricellular proteins. SLRP family members are expressed during neural development and in adult neural tissues, including ocular tissues. This review focuses on describing SLRP family members involvement in neural development with a brief summary of their role in non-neural ocular tissues and in response to neural injury.
Resumo:
This paper proposes an in situ diagnostic and prognostic (D&P) technology to monitor the health condition of insulated gate bipolar transistors (IGBTs) used in EVs with a focus on the IGBTs' solder layer fatigue. IGBTs' thermal impedance and the junction temperature can be used as health indicators for through-life condition monitoring (CM) where the terminal characteristics are measured and the devices' internal temperature-sensitive parameters are employed as temperature sensors to estimate the junction temperature. An auxiliary power supply unit, which can be converted from the battery's 12-V dc supply, provides power to the in situ test circuits and CM data can be stored in the on-board data-logger for further offline analysis. The proposed method is experimentally validated on the developed test circuitry and also compared with finite-element thermoelectrical simulation. The test results from thermal cycling are also compared with acoustic microscope and thermal images. The developed circuitry is proved to be effective to detect solder fatigue while each IGBT in the converter can be examined sequentially during red-light stopping or services. The D&P circuitry can utilize existing on-board hardware and be embedded in the IGBT's gate drive unit.
Resumo:
A role for the minichromosome maintenance (MCM) proteins in cancer initiation and progression is slowly emerging. Functioning as a complex to ensure a single chromosomal replication per cell cycle, the six family members have been implicated in several neoplastic disease states, including breast cancer. Our study aim to investigate the prognostic significance of these proteins in breast cancer. We studied the expression of MCMs in various datasets and the associations of the expression with clinicopathological parameters. When considered alone, high level MCM4 overexpression was only weakly associated with shorter survival in the combined breast cancer patient cohort (n = 1441, Hazard Ratio = 1.31; 95% Confidence Interval = 1.11-1.55; p = 0.001). On the other hand, when we studied all six components of the MCM complex, we found that overexpression of all MCMs was strongly associated with shorter survival in the same cohort (n = 1441, Hazard Ratio = 1.75; 95% Confidence Interval = 1.31-2.34; p <0.001), suggesting these MCM proteins may cooperate to promote breast cancer progression. Indeed, their expressions were significantly correlated with each other in these cohorts. In addition, we found that increasing number of overexpressed MCMs was associated with negative ER status as well as treatment response. Together, our findings are reproducible in seven independent breast cancer cohorts, with 1441 patients, and suggest that MCM profiling could potentially be used to predict response to treatment and prognosis in breast cancer patients.
Resumo:
Electric vehicles are a key prospect for future transportation. A large penetration of electric vehicles has the potential to reduce the global fossil fuel consumption and hence the greenhouse gas emissions and air pollution. However, the additional stochastic loads imposed by plug-in electric vehicles will possibly introduce significant changes to existing load profiles. In his paper, electric vehicles loads are integrated into an 5-unit system using a non-convex dynamic dispatch model. The actual infrastructure characteristics including valve-point effects, load balance constrains and transmission loss have been included in the model. Multiple load profiles are comparatively studied and compared in terms of economic and environmental impacts in order o identify patterns to charge properly. The study as expected shows ha off-peak charging is the best scenario with respect to using less fuels and producing less emissions.
Resumo:
Resumo:
Economic and environmental load dispatch aims to determine the amount of electricity generated from power plants to meet load demand while minimizing fossil fuel costs and air pollution emissions subject to operational and licensing requirements. These two scheduling problems are commonly formulated with non-smooth cost functions respectively considering various effects and constraints, such as the valve point effect, power balance and ramp rate limits. The expected increase in plug-in electric vehicles is likely to see a significant impact on the power system due to high charging power consumption and significant uncertainty in charging times. In this paper, multiple electric vehicle charging profiles are comparatively integrated into a 24-hour load demand in an economic and environment dispatch model. Self-learning teaching-learning based optimization (TLBO) is employed to solve the non-convex non-linear dispatch problems. Numerical results on well-known benchmark functions, as well as test systems with different scales of generation units show the significance of the new scheduling method.
Resumo:
Under the European Union Renewable Energy Directive each Member State is mandated to ensure that 10% of transport energy (excluding aviation and marine transport) comes from renewable sources by 2020. The Irish Government intends to achieve this target with a number of policies including ensuring that 10% of all vehicles in the transport fleet are powered by electricity by 2020. This paper investigates the impact of the 10% electric vehicle target in Ireland in 2020 using a dynamic programming based long term generation expansion planning model. The model developed optimizes power dispatch using hourly electricity demand curves up to 2020, while incorporating generator characteristics and certain operational requirements such as energy not served and loss of load probability while satisfying constraints on environmental emissions, fuel availability and generator operational and maintenance costs. Two distinct scenarios are analysed based on a peak and off-peak charging regimes in order to simulate the effects of the electric vehicles charging in 2020. The importance and influence of the charging regimes on the amount of energy used and tailgate emissions displaced is then determined.
Resumo:
There are many uncertainties in forecasting the charging and discharging capacity required by electric vehicles (EVs) often as a consequence of stochastic usage and intermittent travel. In terms of large-scale EV integration in future power networks this paper develops a capacity forecasting model which considers eight particular uncertainties in three categories. Using the model, a typical application of EVs to load levelling is presented and exemplified using a UK 2020 case study. The results presented in this paper demonstrate that the proposed model is accurate for charge and discharge prediction and a feasible basis for steady-state analysis required for large-scale EV integration.
Resumo:
In recent years, a wide variety of centralised and decentralised algorithms have been proposed for residential charging of electric vehicles (EVs). In this paper, we present a mathematical framework which casts the EV charging scenarios addressed by these algorithms as optimisation problems having either temporal or instantaneous optimisation objectives with respect to the different actors in the power system. Using this framework and a realistic distribution network simulation testbed, we provide a comparative evaluation of a range of different residential EV charging strategies, highlighting in each case positive and negative characteristics.
Resumo:
BRCA1 is a major breast and ovarian cancer susceptibility gene, with mutations in this gene predisposing women to a very high risk of developing breast and ovarian tumours. BRCA1 primarily functions to maintain genomic stability via critical roles in DNA repair, cell cycle checkpoint control, transcriptional regulation, apoptosis and mRNA splicing. As a result, BRCA1 mutations often result in defective DNA repair, genomic instability and sensitivity to DNA damaging agents. BRCA1 carries out these different functions through its ability to interact, and form complexes with, a vast array of proteins involved in multiple cellular processes, all of which are considered to contribute to its function as a tumour suppressor. This review discusses and highlights recent research into the functions of BRCA1-related protein complexes and their roles in maintaining genomic stability and tumour suppression.
Resumo:
Recent research has supported the view that the distributions of many pests and diseases have extended towards higher latitudes over the last 50 years. Probably driven by a combination of climate change and trade, this extension to the ranges of hundreds of plant pathogens may have serious implications not only for agriculture, horticulture and forestry, but also for turf production &maintenance. Here we review our data relating to the current status of three emerging pest and disease problems across North West Europe (rapid blight, Labyrinthula sp. , the root knot nematode, Meloidogyne minor and the pacific stem gall nematode, Anguina pacificae ) and discuss the factors which may be involved in their spread and increasing impact on the turf industry. With turf production and maintenance becoming an increasingly international business, we ask if biosecurity and the promotion of plant health in turf production fields and associated sport facilities should be a greater priority for the industry. We also examine if a lack of effective biosecurity measures in the materials supply chain has led to increased plant health problems.