108 resultados para SCHOTTKY-BARRIER
Resumo:
Design and operation of Fe0 permeable reactive barriers (PRBs) can be improved by understanding the long-term mineralogical transformations that occur within PRBs. Changes in mineral precipitates, cementation, and corrosion of Fe0 filings within an in situ pilot-scale PRB were examined after the first 30 months of operation and compared with results of a previous study of the PRB conducted 15 months earlier using X-ray diffraction and scanning electron microscopy employing energy dispersive X-ray and backscatter electron analyses. Iron (oxy)hydroxides, aragonite, and maghemite and/or magnetite occurred throughout the cores collected 30 mo after installation. Goethite, lepidocrocite, mackinawite, aragonite, calcite, and siderite were associated with oxidized and cemented areas, while green rusts were detected in more reduced zones. Basic differences from our last detailed investigation include (i) mackinawite crystallized from amorphous FeS, (ii) aragonite transformed into calcite, (iii) akaganeite transformed to goethite and lepidocrocite, (iv) iron (oxy)hydroxides and calcium and iron carbonate minerals increased, (v) cementation was greater in the more recent study, and (vi) oxidation, corrosion, and disintegration of Fe0 filings were greater, especially in cemented areas, in the more recent study. If the degree of corrosion and cementation that was observed from 15 to 30 mo after installation continues, certain portions of the PRB (i.e., up-gradient entrance of the ground water to the Fe0 section of the PRB) may last less than five more years, thus reducing the effectiveness of the PRB to mitigate contaminants.
Resumo:
Permeable reactive barriers (PRBs) of zero-valent iron (Fe0) are increasingly being used to remediate contaminated ground water. Corrosion of Fe0 filings and tbe formation of precipitates can occur when the PRB material comes in contact with ground water and may reduce the lifespan and effectiveness of the barrier. At present, there are no routine procedures for preparing and analyzing the mineral precipitates from Fe0 PRB material. These procedures are needed because mineralogical composition of corrosion products used to interpret the barrier processes can change with iron oxidation and sample preparation. The objectives of this study were (i) to investigate a method of preparing Fe0 reactive barrier material for mineralogical analysis by X-ray diffraction (XRD), and (ii) to identify Fe mineral phases and rates of transformations induced by different mineralogical preparation techniques. Materials from an in situ Fe0 PRB were collected by undisturbed coring and processed for XRD analysis after different times since sampling for three size fractions and by various drying treatments. We found that whole-sample preparation for analysis was necessary because mineral precipitates occurred within the PRB material in different size fractions of the samples. Green rusts quickly disappeared from acetone-dried samples and were not present in air-dried and oven-dried samples Maghemite/magnetite content increased over time and in oven-dried samples, especially after heating to 105°C. We conclude that care must be taken during sample preparation of Fe0 PRB material, especially for detection of green rusts, to ensure accurate identification of minerals present within the barrier system.
Resumo:
Light emitted from metal/oxide/metal tunnel junctions can originate from the slow-mode surface plasmon polariton supported in the oxide interface region. The effective radiative decay of this mode is constrained by competition with heavy intrinsic damping and by the need to scatter from very small scale surface roughness; the latter requirement arises from the mode's low phase velocity and the usual momentum conservation condition in the scattering process. Computational analysis of conventional devices shows that the desirable goals of decreased intrinsic damping and increased phase velocity are influenced, in order of priority, by the thickness and dielectric function of the oxide layer, the type of metal chosen for each conducting electrode, and temperature. Realizable devices supporting an optimized slow-mode plasmon polariton are suggested. Essentially these consist of thin metal electrodes separated by a dielectric layer which acts as a very thin (a few nm) electron tunneling barrier but a relatively thick (several 10's of nm) optically lossless region. (C) 1995 American Institute of Physics.
Resumo:
The surface plasmon polariton mediated photoresponse from Al-GaAs diodes is examined in a prism-air gap-diode configuration as a function of both the wavelength of the incident light and thickness of the Al electrode. The experimental data shows a pronounced dip in reflectance as a function of internal angle of incidence in the prism, due to the excitation of the surface plasmon polariton at the Al-air interface, and a corresponding peak in device photosignal. Careful modelling of reflectance and quantum efficiency data shows that the bulk of the signal is generated by light which is re-radiated from this surface mode into the semiconductor substrate where it is absorbed by the creation of electron-hole pairs in the depletion region. This holds for all the wavelengths used here (all are shorter than the GaAs absorption edge) and across the thickness range of the Al electrodes (20-50 nm). Quantum efficiencies in the range 0.5-22% and enhancement factors of typically 7.5 were recorded in this investigation.
Resumo:
In this paper the tracking system used to perform a scaled vehicle-barrier crash test is reported. The scaled crash test was performed as part of a wider project aimed at designing a new safety barrier making use of natural building materials. The scaled crash test was designed and performed as a proof of concept of the new mass-based safety barriers and the study was composed of two parts: the scaling technique and of a series of performed scaled crash tests. The scaling method was used for 1) setting the scaled test impact velocity so that energy dissipation and momentum transferring, from the car to the barrier, can be reproduced and 2) predicting the acceleration, velocity and displacement values occurring in the full-scale impact from the results obtained in a scaled test. To achieve this goal the vehicle and barrier displacements were to be recorded together with the vehicle accelerations and angular velocities. These quantities were measured during the tests using acceleration sensors and a tracking system. The tracking system was composed of a high speed camera and a set of targets to measure the vehicle linear and angular velocities. A code was developed to extract the target velocities from the videos and the velocities obtained were then compared with those obtained integrating the accelerations provided by the sensors to check the reliability of the method.
Resumo:
Background: Premature aging syndromes recapitulate many aspects of natural aging and provide an insight into this phenomenon at a molecular and cellular level. The progeria syndromes appear to cause rapid aging through disruption of normal nuclear structure. Recently, a coding mutation (c.34G > A [p.A12T]) in the Barrier to Autointegration Factor 1 (BANF1) gene was identified as the genetic basis of Nestor-Guillermo Progeria syndrome (NGPS). This mutation was described to cause instability in the BANF1 protein, causing a disruption of the nuclear envelope structure.
Results: Here we demonstrate that the BANF1 A12T protein is indeed correctly folded, stable and that the observed phenotype, is likely due to the disruption of the DNA binding surface of the A12T mutant. We demonstrate, using biochemical assays, that the BANF1 A12T protein is impaired in its ability to bind DNA while its interaction with nuclear envelope proteins is unperturbed. Consistent with this, we demonstrate that ectopic expression of the mutant protein induces the NGPS cellular phenotype, while the protein localizes normally to the nuclear envelope.
Conclusions: Our study clarifies the role of the A12T mutation in NGPS patients, which will be of importance for understanding the development of the disease.
Resumo:
Ischaemic injury impairs the integrity of the blood-brain barrier (BBB). In this study, we investigated the molecular causes of this defect with regard to the putative correlations among NAD(P)H oxidase, plasminogen-plasmin system components, and matrix metalloproteinases. Hence, the activities of NAD(P)H oxidase, matrix metalloproteinase-2, urokinase-type plasminogen activator (uPA), and tissue-type plasminogen activator (tPA), and superoxide anion levels, were assessed in human brain microvascular endothelial cells (HBMECs) exposed to oxygen-glucose deprivation (OGD) alone or OGD followed by reperfusion (OGD + R). The integrity of an in vitro model of BBB comprising HBMECs and astrocytes was studied by measuring transendothelial electrical resistance and the paracellular flux of albumin. OGD with or without reperfusion (OGD ± R) radically perturbed barrier function while concurrently enhancing uPA, tPA and NAD(P)H oxidase activities and superoxide anion release in HBMECs. Pharmacological inactivation of NAD(P)H oxidase attenuated OGD ± R-mediated BBB damage through modulation of matrix metalloproteinase-2 and tPA, but not uPA activity. Overactivation of NAD(P)H oxidase in HBMECs via cDNA electroporation of its p22-phox subunit confirmed the involvement of tPA in oxidase-mediated BBB disruption. Interestingly, blockade of uPA or uPA receptor preserved normal BBB function by neutralizing both NAD(P)H oxidase and matrix metalloproteinase-2 activities. Hence, selective targeting of uPA after ischaemic strokes may protect cerebral barrier integrity and function by concomitantly attenuating basement membrane degradation and oxidative stress.
Resumo:
Ischaemic strokes evoke blood-brain barrier (BBB) disruption and oedema formation through a series of mechanisms involving Rho-kinase activation. Using an animal model of human focal cerebral ischaemia, this study assessed and confirmed the therapeutic potential of Rho-kinase inhibition during the acute phase of stroke by displaying significantly improved functional outcome and reduced cerebral lesion and oedema volumes in fasudil- versus vehicle-treated animals. Analyses of ipsilateral and contralateral brain samples obtained from mice treated with vehicle or fasudil at the onset of reperfusion plus 4 h post-ischaemia or 4 h post-ischaemia alone revealed these benefits to be independent of changes in the activity and expressions of oxidative stress- and tight junction-related parameters. However, closer scrutiny of the same parameters in brain microvascular endothelial cells subjected to oxygen-glucose deprivation ± reperfusion revealed marked increases in prooxidant NADPH oxidase enzyme activity, superoxide anion release and in expressions of antioxidant enzyme catalase and tight junction protein claudin-5. Cotreatment of cells with Y-27632 prevented all of these changes and protected in vitro barrier integrity and function. These findings suggest that inhibition of Rho-kinase after acute ischaemic attacks improves cerebral integrity and function through regulation of endothelial cell oxidative stress and reorganization of intercellular junctions. Inhibition of Rho-kinase (ROCK) activity in a mouse model of human ischaemic stroke significantly improved functional outcome while reducing cerebral lesion and oedema volumes compared to vehicle-treated counterparts. Studies conducted with brain microvascular endothelial cells exposed to OGD ± R in the presence of Y-27632 revealed restoration of intercellular junctions and suppression of prooxidant NADPH oxidase activity as important factors in ROCK inhibition-mediated BBB protection.
Resumo:
Stroke patients with hyperglycemia (HG) develop higher volumes of brain edema emerging from disruption of blood-brain barrier (BBB). This study explored whether inductions of protein kinase C-β (PKC-β) and RhoA/Rho-kinase/myosin-regulatory light chain-2 (MLC2) pathway may account for HG-induced barrier damage using an in vitro model of human BBB comprising human brain microvascular endothelial cells (HBMEC) and astrocytes. Hyperglycemia (25 mmol/L D-glucose) markedly increased RhoA/Rho-kinase protein expressions (in-cell westerns), MLC2 phosphorylation (immunoblotting), and PKC-β (PepTag assay) and RhoA (Rhotekin-binding assay) activities in HBMEC while concurrently reducing the expression of tight junction protein occludin. Hyperglycemia-evoked in vitro barrier dysfunction, confirmed by decreases in transendothelial electrical resistance and concomitant increases in paracellular flux of Evan's blue-labeled albumin, was accompanied by malformations of actin cytoskeleton and tight junctions. Suppression of RhoA and Rho-kinase activities by anti-RhoA immunoglobulin G (IgG) electroporation and Y-27632, respectively prevented morphologic changes and restored plasma membrane localization of occludin. Normalization of glucose levels and silencing PKC-β activity neutralized the effects of HG on occludin and RhoA/Rho-kinase/MLC2 expression, localization, and activity and consequently improved in vitro barrier integrity and function. These results suggest that HG-induced exacerbation of the BBB breakdown after an ischemic stroke is mediated in large part by activation of PKC-β.
Resumo:
BACKGROUND AND PURPOSE: Enhanced vascular permeability attributable to disruption of blood-brain barrier results in the development of cerebral edema after stroke. Using an in vitro model of the brain barrier composed of human brain microvascular endothelial cells and human astrocytes, this study explored whether small GTPase RhoA and its effector protein Rho kinase were involved in permeability changes mediated by oxygen-glucose deprivation (OGD), key pathological phenomena during ischemic stroke.
METHODS: OGD increased RhoA and Rho kinase protein expressions in human brain microvascular endothelial cells and human astrocytes while increasing or unaffecting that of endothelial nitric oxide synthase in respective cells. Reperfusion attenuated the expression and activity of RhoA and Rho kinase in both cell types compared to their counterparts exposed to equal periods of OGD alone while selectively increasing human brain microvascular endothelial cells endothelial nitric oxide synthase protein levels. OGD compromised the barrier integrity as confirmed by decreases in transendothelial electric resistance and concomitant increases in flux of permeability markers sodium fluorescein and Evan's blue albumin across cocultures. Transfection of cells with constitutively active RhoA also increased flux and reduced transendothelial electric resistance, whereas inactivation of RhoA by anti-RhoA Ig electroporation exerted opposite effects. In vitro cerebral barrier dysfunction was accompanied by myosin light chain overphosphorylation and stress fiber formation. Reperfusion and treatments with a Rho kinase inhibitor Y-27632 significantly attenuated barrier breakdown without profoundly altering actin structure.
CONCLUSIONS: Increased RhoA/Rho kinase/myosin light chain pathway activity coupled with changes in actin cytoskeleton account for OGD-induced endothelial barrier breakdown.
Resumo:
Extensive drilling of the Great Barrier Reef (GBR) in the 70s and 80s illuminated the main factors controlling reef growth during the Holocene. However, questions remain about: (1) the precise nature and timing of reef "turnon" or initiation, (2) whether consistent spatio-temporal patterns occur in the bio-sedimentologic response of the reef to Holocene sea-level rise then stability, and (3) how these factors are expressed in the context of the different evolutionary states (juvenile-mature-senile reefs). Combining 21 new C14-AMS and 146 existing recalibrated radiocarbon and U/Th ages, we investigated the detailed spatial and temporal variations in sedimentary facies and coralgal assemblages in fifteen cores across four reefs (Wreck, Fairfax, One Tree and Fitzroy) from the Southern GBR. Our newly defined facies and assemblages record distinct chronostratigraphic patterns in the cores, displaying both lateral zonation across the different reefs and shallowing upwards sequences, characterised by a transition from deep (Porites/faviids) to shallow (Acropora/Isopora) coral types. The revised reef accretion curves show a significant lag period, ranging from 0.7-2 ka, between flooding of the antecedent Pleistocene substrate and Holocene reef turn-on. This lag period and dominance of more environmentally tolerant early colonizers (e.g., domal Porites and faviids), suggests initial conditions that were unfavourable for coral growth. We contend that higher input of fine siliciclastic material from regional terrigenous sources, exposure to hydrodynamic forces and colonisation in deeper waters are the main factors influencing initially reduced growth and development. All four reefs record a time lag and we argue that the size and shape of the antecedent platform is most important in determining the duration between flooding and recolonisation of the Holocene reef. Finally, our study of Capricorn Bunker Group Holocene reefs suggests that the size and shape of the antecedent substrate has a greater impact on reef evolution and final evolutionary state (mature vs. senile), than substrate depth alone.
Resumo:
Submerged reefs are important recorders of palaeo-environments and sea-level change, and provide a substrate for modern mesophotic (deep-water, light-dependent) coral communities. Mesophotic reefs are rarely, if ever, described from the fossil record and nothing is known of their long-term record on Great Barrier Reef (GBR). Sedimentological and palaeo-ecological analyses coupled with 67 14C AMS and U–Th radiometric dates from dredged coral, algae and bryozoan specimens, recovered from depths of 45 to 130 m, reveal two distinct generations of fossil mesophotic coral community development on the submerged shelf edge reefs of the GBR. They occurred from 13 to 10 ka and 8 ka to present. We identified eleven sedimentary facies representing both autochthonous (in situ) and allochthonous (detrital) genesis, and their palaeo-environmental settings have been interpreted based on their sedimentological characteristics, biological assemblages, and the distribution of similar modern biota within the dredges. Facies on the shelf edge represent deep sedimentary environments, primarily forereef slope and open platform settings in palaeo-water depths of 45–95 m. Two coral–algal assemblages and one non-coral encruster assemblage were identified: 1) Massive and tabular corals including Porites, Montipora and faviids associated with Lithophylloids and minor Mastophoroids, 2) platy and encrusting corals including Porites, Montipora and Pachyseris associated with melobesioids and Sporolithon, and 3) Melobesiods and Sporolithon with acervulinids (foraminifera) and bryozoans. Based on their modern occurrence on the GBR and Coral Sea and modern specimens collected in dredges, these are interpreted as representing palaeo-water depths of < 60 m, < 80–100 m and > 100 m respectively. The first mesophotic generation developed at modern depths of 85–130 m from 13 to 10.2 ka and exhibit a deepening succession of < 60 to > 100 m palaeo-water depth through time. The second generation developed at depths of 45–70 m on the shelf edge from 7.8 ka to present and exhibit stable environmental conditions through time. The apparent hiatus that interrupted the mesophotic coral communities coincided with the timing of modern reef initiation on the GBR as well as a wide-spread flux of siliciclastic sediments from the shelf to the basin. For the first time we have observed the response of mesophotic reef communities to millennial scale environmental perturbations, within the context of global sea-level rise and environmental changes.