319 resultados para Plasma generation (laser-produced, RF, x ray-produced)
Resumo:
We have performed short-pulse x-ray scattering measurements on laser-driven shock-compressed plastic samples in the warm dense matter regime, providing instantaneous snapshots of the system evolution. Time-resolved and angularly resolved scattered spectra sensitive to the correlation effects in the plasma show the appearance of short-range order within a few interionic separations. Comparison with radiation-hydrodynamic simulations indicates that the shocked plastic is compressed with a temperature of a few electron volts. These results are important for the understanding of the thermodynamic behavior of strongly correlated matter for conditions relevant to both laboratory astrophysics and inertial confinement fusion research.
Resumo:
In dielectronic recombination of hydrogenlike ions an intermediate doubly excited heliumlike ion is formed. Since the K shell is empty, both excited electrons can decay sequentially to the ground state. In this paper we analyze the x-ray radiation emitted from doubly and singly excited heliumlike titanium ions produced inside the Tokyo electron beam ion trap. Theoretical population densities of the singly excited states after the first transition and the transition probabilities of these states into the ground state were also calculated. This allowed theoretical branching ratios to be determined for each manifold. These branching ratios are compared to the experimentally obtained x-ray distribution by fitting across the relevant peak using a convolution of the theoretically obtained resonance strengths and energies. By taking into account 2E1 transitions which are not observed in the experiment, the measured and calculated ratios agree well. This method provides a valuable insight into the transition dynamics of excited highly charged ions.
Resumo:
Measurements of the duration of X-ray lasing pumped with picosecond pulses from the VULCAN optical laser are obtained using a streak camera with 700 fs temporal resolution. Combined with a temporal smearing due to the spectrometer employed, we have measured X-ray laser pulse durations for Ni-like silver at 13.9 nm with a total time resolution of 1.1 ps. For Ni-like silver, the X-ray laser output has a steep rise followed by an approximately exponential temporal decay with measured full-width at half-maximum (FWHM) of 3.7 (+/-0.5) ps. For Ne-like nickel lasing at 23.1 nm, the measured duration of lasing is approximate to10.7 (+/-1) ps (FWHM). An estimate of the duration of the X-ray laser gain has been obtained by temporally resolving spectrally integrated continuum and resonance line emission. For Ni-like silver, this time of emission is approximate to22 (+/-2) ps (FWHM), while for Ne-like nickel we measure approximate to35 (+/-2) ps (FWHM). Assuming that these times of emission correspond to the gain duration, we show that a simple model consistently relates the gain durations to the measured durations of X-ray lasing. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
We have used XUV lasers to make absolute measurements of the photoabsorption coefficient of Al at energies just below that of the L3 absorption edge at 72.7 eV. Transmission measurements at photon energies of 53.7 and 63.3 eV have been made using Ne-like Ni and Ge XUV lasers. The XUV laser output was recorded in first and second orders using a flat-field spectrometer. Al foils with steps of various thicknesses were placed over the first order diffracted signal, while the second order diffraction was used to monitor the beam profile at each position. The transmission data agree extremely well with the original measurements at these wavelengths made by Henke and co-workers (Henke B L, Gullikson E M and Davis J C 1993 At. Data Nucl. Data Tables 54 18 1), but are in conflict with subsequent measurements which are currently in common use (Gullikson E M, Denham P, Mrowka S and Underwood J H 1994 Phys. Rev. B 49 16 283). The exact values of the absorption coefficients in this region of the spectrum have significant implications for the diagnosis of the energy and intensity output of XUV lasers.
Resumo:
We report on a time-resolved study of a Ni-like transient collisionnal X-ray laser with a resolution as high as 1.9 ps The FWHM duration of the Ni-like x-ray laser pulse at 13.99 nin Ag J = 0 -->1 4d-4p line is measured to be as short as similar to2 ps at optimum conditions of pump laser irradiation. This is about four times shorter than was estimated in previous experiments. The x-ray laser signal appears in the rising edge of the continuum emission. The x-ray laser duration rises significantly when the short (heating) pulse duration is increased and when doubling the peak-to-peak delay of the two irradiation pulses, It does not change when the short pulse energy is increased. The results presented are the first direct measurements of the temporal profile of the x-ray laser output at a high resolution.
Resumo:
Saturated output has been observed for both Ne and Ni-like X-ray lasers when Pumped in the transient mode. As these 'normal' transitions display very high gain, attempts have been made to observe a 2p --> 2s inner shell transition in Ne-like ions, which scale well towards the water window. Modelling of the pump conditions for Ge lasing at 6.2 run is presented. As the predicted gain is low the experiment was set up for 18 mm targets. Shots were taken on Ti, Fe, Ni and Ge. A similar to1.5 ps travelling wave pulse is applied at various times after the peak of a long, preforming Pulse. Various pump conditions were attempted but no inner shell X-ray laser was detected.
Resumo:
Double laser pulses of duration similar to 75 ps and short laser pulses similar to 1 ps superimposed on longer duration background pulses have been shown to efficiently pump lasing in Ne-like and Ni-like ions. For the 75 ps pumping, X-ray laser output without travelling wave pumping is shown to be well-described by a model of ASE output. With I ps pumping, the X-ray laser output with different velocity travelling wave pumping is well-fitted with an extension to the ASE model allowing for travelling wave excitation of the gain along the plasma line. The model is used to investigate the production of short (<1 ps) x-ray laser pulses and the effects of non-ideal travelling wave velocities on the X-ray laser output. Resonance line spectra of emission perpendicular to the plasma line are measured and simulated. It is shown that an accurate opacity model for the more intense Ne-like ions is needed to correctly simulate the spectra.
Resumo:
We have focused a beam (BL3) of FLASH (Free-electron LASer in Hamburg: lambda = 13.5 nm, pulse length 15 fs, pulse energy 10-40 mu J, 5Hz) using a fine polished off-axis parabola having a focal length of 270 mm and coated with a Mo/Si multilayer with an initial reflectivity of 67% at 13.5 nm. The OAP was mounted and aligned with a picomotor controlled six-axis gimbal. Beam imprints on poly(methyl methacrylate) -PMMA were used to measure focus and the focused beam was used to create isochoric heating of various slab targets. Results show the focal spot has a diameter of
Resumo:
In this paper we describe experimental results on angularly resolved x-ray scatter from a sample of warm dense aluminium that has been created by double sided laser-driven shock compression. The experiment was carried out on the Central Laser Facility of the Rutherford Appleton Laboratory, using the VULCAN laser. The form of the angularly resolved scatter cross-section was compared with predictions based on a series of molecular dynamics simulations with an embedded atom potential, a Yukakwa potential and a bare Coulomb potential. The importance of screening is evident from the comparison and the embedded atom model seems to match experiment better than the Yukawa potential.
Resumo:
A scheme to obtain brilliant x-ray sources by coherent reflection of a counter-propagating pulse from laser-driven dense electron sheets is theoretically and numerically investigated in a self-consistent manner. A radiation pressure acceleration model for the dynamics of the electron sheets blown out from laser-irradiated ultrathin foils is developed and verified by PIC simulations. The first multidimensional and integral demonstration of the scheme by 2D PIC simulations is presented. It is found that the reflected pulse undergoes Doppler-upshift by a factor 4?z2, where ?z = (1- vz2/c2)-1/2 is the effective Lorentz factor of the electron sheet al ong its normal direction. Meanwhile the pulse electric field is intensified by a factor depending on the electron density of the sheet in its moving frame ne/?, where ? is the full Lorentz factor.