104 resultados para Paraffin deposition
Resumo:
The 2010 Eyjafjallajökull lasted 39 days and had 4 different phases, of which the first and third (14–18 April and 5–6 May) were most intense. Most of this period was dominated by winds with a northerly component that carried tephra toward Europe, where it was deposited in a number of locations and was sampled by rain gauges or buckets, surface swabs, sticky-tape samples and air filtering. In the UK, tephra was collected from each of the Phases 1–3 with a combined range of latitudes spanning the length of the country. The modal grain size of tephra in the rain gauge samples was 25 um, but the largest grains were 100 um in diameter and highly vesicular. The mass loading was equivalent to 8–218 shards cm2, which is comparable to tephra layers from much larger past eruptions. Falling tephra was collected on sticky tape in the English Midlands on 19, 20 and 21st April (Phase 2), and was dominated by aggregate clasts (mean diameter 85 um, component grains <10 um). SEM-EDS spectra for aggregate grains contained an extra peak for sulphur, when compared to control samples from the volcano, indicating that they were cemented by sulphur-rich minerals e.g. gypsum (CaSO4⋅H2O). Air quality monitoring stations did not record fluctuations in hourly PM10 concentrations outside the normal range of variability during the eruption, but there was a small increase in 24-hour running mean concentration from 21–24 April (Phase 2). Deposition of tephra from Phase 2 in the UK indicates that transport of tephra from Iceland is possible even for small eruption plumes given suitable wind conditions. The presence of relatively coarse grains adds uncertainty to concentration estimates from air quality sensors, which are most sensitive to grain sizes <10 um. Elsewhere, tephra was collected from roofs and vehicles in the Faroe Islands (mean grain size 40 um, but 100 um common), from rainwater in Bergen in Norway (23–91 um) and in air filters in Budapest, Hungary (2–6 um). A map is presented summarizing these and other recently published examples of distal tephra deposition from the Eyjafjallajökull eruption. It demonstrates that most tephra deposited on mainland Europe was produced in the highly explosive Phase 1 and was carried there in 2–3 days.
Resumo:
The radiative decay of surface plasmon polaritons has been investigated in an attempt to characterize the surface roughness of Ag films prepared under different conditions. The polaritons were excited by the method of attenuated total reflection of light. The films were deposited on the face of a 60-degrees BK-7 glass prism at a rate that was deliberately fixed in two different ranges (centred on 0.1 and 10 nm s-1) and in some cases a CaF2 underlayer was used to roughen the film surfaces. The intensity of the scattered light emitted from the opposite face of the films was measured as a function of direction for each using the same sensitivity scale and was correlated with the preparation of the film. It was found that on nominally smooth substrates fast-deposited thinner films give out more light and are deduced to have greater short wavelength (300-600 nm) roughness amplitude. There is also evidence for long wavelenth (7 mum) periodic roughness due to the prism substrate itself. On CaF2 roughened surfaces the light output from the films is further increased and the peak intensity is backward directed with respect to the exciting laser beam direction. Here roughness on a lateral scale of 350 nm is responsible. Also, elastic scattering of surface plasmon polaritons at grain boundaries reduces the light output from fast deposited, small grain, films on CaF2 roughened surfaces. Overall, a consistent picture of roughness induced radiative polariton decay emerges for all cases studied.
Resumo:
This paper describes the extraction of C5–C8 linear α-olefins from olefin/paraffin mixtures of the same carbon number via a reversible complexation with a silver salt (silver bis(trifluoromethylsulfonyl)imide, Ag[Tf2N]) to form room temperature ionic liquids [Ag(olefin)x][Tf2N]. From the experimental (liquid + liquid) equilibrium data for the olefin/paraffin mixtures and Ag[Tf2N], 1-pentene showed the best separation performance while C7 and C8 olefins could only be separated from the corresponding mixtures on addition of water which also improves the selectivity at lower carbon numbers like the C5 and C6, for example. Using infrared and Raman spectroscopy of the complex and Ag[Tf2N] saturated by olefin, the mechanism of the extraction was found to be based on both chemical complexation and the physical solubility of the olefin in the ionic liquid ([Ag(olefin)x][Tf2N]). These experiments further support the use of such extraction techniques for the separation of olefins from paraffins.
Resumo:
This paper describes the extraction of C5-C8 linear α-olefins from olefin/paraffin mixtures of the same carbon number using silver(I)/N,N-dimethylbenzamide bis(trifluoromethylsulfonyl)imide ([Ag(DMBA)2][Tf2N]) or silver(I)/propylamine bis(trifluoromethylsulfonyl)imide ([Ag(PrNH2)2][Tf2N]) as the extracting agent. The separation performance of the system increased with increasing chain length. [Ag(DMBA)2][Tf2N] appeared to outperform [Ag(PrNH2)2][Tf2N] in terms of both selectivity and distribution coefficient. The [Ag(DMBA)2][Tf2N] system was successfully modeled using the universal quasi-chemical activity coefficient (UNIQUAC) model. These results support the potential future development of amine/amide-based ligands for producing soluble silver complexes useful for the separation of olefins from paraffins.
Resumo:
The optical properties of bismuth oxide films prepared by pulsed laser deposition (PLD), absorption in the photon energy range 2.50-4.30 eV and optical functions (n, k, epsilon(1), and epsilon(2)) in the domain 3.20-6.50 eV, have been investigated. As-prepared films (d = 0.05-1.50 mum) are characterized by a mixture of polycrystalline and amorphous phases. The fundamental absorption edge is described by direct optical band-to-band transitions with energies 2.90 and 3.83 eV The dispersion of the optical functions provided values of 4.40-6.25 eV for electron energies of respective direct transitions. In the spectral range 400-1000 nm, bismuth oxide films show a normal dispersion, which can be interpreted in the frame of a single oscillator model. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Epitaxial SrBi2Ta2O9 (SBT) thin films with well-defined (001), (116), and (103) orientations have been grown by pulsed laser deposition on (001)-, (011)-, and (111)-oriented Nb-doped SrTiO3 substrates. X-ray diffraction pole figure and phi -scan measurements revealed that the three-dimensional epitaxial orientation relation SBT(001)parallel to SrTiO3(001), and SBT[1(1) over bar 0]parallel to SrTiO3[100] is valid for all cases of SET thin films on SrTiO3 substrates, irrespective of their orientations. Atomic force microscopy images of the c-axis-oriented SET revealed polyhedron-shaped grains showing spiral growth around screw dislocations. The terrace steps of the c-axis-oriented SET films were integral multiples of a quarter of the lattice parameter c of SBT (similar to 0.6 nm). The grains of (103)-oriented SET films were arranged in a triple-domain configuration consistent with the symmetry of the SrTiO3(111) substrate. The measured remanent polarization (2P(r)) and coercive field (2E(c)) of (116)-oriented SBT films were 9.6 muC/cm(2) and 168 kV/cm, respectively, for a maximum applied electric field of 320 kV/cm. Higher remanent polarization (2P(r)=10.4 muC/cm(2)) and lower coercive field (2E(c)=104 kV/cm) than those of SBT(116) films were observed in (103)-oriented SET thin films, and (001)-oriented SET revealed no ferroelectricity along the [001] axis. The dielectric constants of (001)-, (116)-, and (103)-oriented SBT were 133, 155, and 189, respectively. (C) 2000 American Institute of Physics.
Resumo:
In this work, 1-hexene was extracted from its mixtures with n-hexane in varying ratios using a task specific ionic liquid. Herein, the ionic liquid (IL) 1-butyl-3-methylimidazolium nitrate, [BMIM][NO3], was used and examined with and without the addition of a metal salt. The impact of water on both selectivity and distribution coefficient was also tested. Four potential metal salts were investigated, the results of which demonstrate that the dissolution of transition-metal salts in the IL improves the separation of 1-hexene from n-hexane through metal-olefin complexation. Additionally, the presence of water in IL solutions containing metal salt enhances this selectivity. Finally, UNIFAC was used to correlate the experimental LLE data with good accuracy.
Resumo:
The mono(μ-oxo) dicopper cores present in the pores of Cu-ZSM-5 are active for the partial oxidation of methane to methanol. However, copper on the external surface reduces the ratio of active, selective sites to unselective sites. More efficient catalysts are obtained by controlling the copper deposition during synthesis. Herein, the external exchange sites of ZSM-5 samples were passivated by bis(trimethylsilyl) trifluoroacetamide (BSTFA) followed by calcination, promoting selective deposition of intraporous copper during aqueous copper ion exchange. At an optimum level of 1–2 wt % SiO2, IR studies showed a 64 % relative reduction in external copper species and temperature-programmed oxidation analysis showed an associated increase in the formation of methanol compared with unmodified Cu-ZSM-5 samples. It is, therefore, reported that the modified zeolites contained a significantly higher proportion of active, selective copper species than their unmodified counterparts with activity for partial methane oxidation to methanol.
Resumo:
Shape stabilised phase change materials (SSPCMs) based on a high density poly(ethylene)(hv-HDPE) with high (H-PW, Tm = 56–58 °C) and low (L-PW, Tm = 18–23 °C) melting point paraffin waxes were readily prepared using twin-screw extrusion. The thermo-physical properties of these materials were assessed using a combination of techniques and their suitability for latent heat thermal energy storage (LHTES) assessed. The melt processing temperature (160 °C) of the HDPE used was well below the onset of thermal decomposition of H-PW (220 °C), but above that for L-PW (130 °C), although the decomposition process extended over a range of 120 °C and the residence time of L-PW in the extruder was <30 s. The SSPCMs prepared had latent heats up to 89 J/g and the enthalpy values for H-PW in the respective blends decreased with increasing H-PW loading, as a consequence of co-crystallisation of H-PW and hv-HDPE. Static and dynamic mechanical analysis confirmed both waxes have a plasticisation effect on this HDPE. Irrespective of the mode of deformation (tension, flexural, compression) modulus and stress decreased with increased wax loading in the blend, but the H-PW blends were mechanically superior to those with L-PW.
Resumo:
Elucidating the environmental drivers of selenium (Se) spatial distribution in soils at a continental scale is essential to better understand it's biogeochemical cycling to improve Se transfer into diets. Through modelling Se biogeochemistry in China we found that deposition and volatilization are key factors controlling distribution in surface soil, rather than bedrock-derived Se (<0.1 mg/kg). Wet deposition associated with the East Asian summer monsoon, and dry deposition associated with the East Asian winter monsoon, are responsible for dominant Se inputs into northwest and southeast China, respectively. In Central China the rate of soil Se volatilization is similar to that of Se deposition, suggesting that Se volatilization offsets it's deposition, resulting in negligible net Se input in soil. Selenium in surface soil at Central China is roughly equal to low petrogenic Se, which is the main reason for the presence of the Se poor belt. We suggest that both deposition and volatilization of Se could play a key role in Se balance in other terrestrial environments worldwide.