123 resultados para PLATFORMS
Resumo:
In the coming decade installed offshore wind capacity is expected to expand rapidly. This will be both technically and economically challenging. Precise wind resource assessment is one of the more imminent challenges. It is more difficult to assess wind power offshore than onshore due to the paucity of representative wind speed data. Offshore site-specific data is less accessible and is far more costly to collect. However, offshore wind speed data collected from sources such as wave buoys, remote sensing from satellites, national weather ships, and coastal meteorological stations and met masts on barges and platforms may be extrapolated to assess offshore wind power. This study attempts to determine the usefulness of pre-existing offshore wind speed measurements in resource assessment, and presents the results of wind resource estimation in the Atlantic Ocean and in the Irish Sea using data from two offshore meteorological buoys
Resumo:
Since the discovery of the JAK2 V617F mutation in the majority of the myeloproliferative neoplasms (MPN) of polycythemia vera, essential thrombocythemia and primary myelofibrosis ten years ago, further MPN-specific mutational events, notably in JAK2 exon 12, MPL exon 10 and CALR exon 9 have been identified. These discoveries have been rapidly incorporated into evolving molecular diagnostic algorithms. While many of these mutations appear to have prognostic implications, establishing MPN diagnosis is of immediate clinical importance with selection, implementation and the continual evaluation of the appropriate laboratory methodology to achieve this diagnosis similarly vital. The advantages and limitations of these approaches in identifying and quantitating the common MPN-associated mutations is considered herein with particular regard to their clinical utility. The evolution of molecular diagnostic applications and platforms has occurred in parallel with the discovery of MPN-associated mutations and it therefore appears likely that emerging technologies such as next-generation sequencing and digital PCR will in the future, play an increasing role in the molecular diagnosis of MPN.
Resumo:
Mobile malware has been growing in scale and complexity as smartphone usage continues to rise. Android has surpassed other mobile platforms as the most popular whilst also witnessing a dramatic increase in malware targeting the platform. A worrying trend that is emerging is the increasing sophistication of Android malware to evade detection by traditional signature-based scanners. As such, Android app marketplaces remain at risk of hosting malicious apps that could evade detection before being downloaded by unsuspecting users. Hence, in this paper we present an effective approach to alleviate this problem based on Bayesian classification models obtained from static code analysis. The models are built from a collection of code and app characteristics that provide indicators of potential malicious activities. The models are evaluated with real malware samples in the wild and results of experiments are presented to demonstrate the effectiveness of the proposed approach.
Resumo:
Microneedles (MNs) are micron-sized, minimally invasive devices that breach the outermost layer of the skin, the stratum corneum (SC), creating transient, aqueous pores in the skin and facilitating the transport of therapeutic molecules into the epidermis. Following many years of extensive research in the area of MN-mediated trans- and intra-dermal drug delivery, MNs are now being exploited in the cosmeceutical industry as a means of disrupting skin cell architecture, inducing elastin and collagen expression and deposition. They are also being used as vehicles to deliver cosmeceutic molecules across the skin, in addition to their use in combinatorial treatments with topical agents or light sources. This review explores the chronology of microneedling methodologies, which has led to the emergence of MN devices, now extensively used in cosmeceutical applications. Recent developments in therapeutic molecule and peptide delivery to the skin via MN platforms are addressed and some commercially available MN devices are described. Important safety and regulatory considerations relating to MN usage are addressed, as are studies relating to public perception of MN, as these will undoubtedly influence the acceptance of MN products as they progress towards commercialisation.
Resumo:
his essay is premised on the following: a conspiracy to fix or otherwise manipulate the outcome of a sporting event for profitable purpose. That conspiracy is in turn predicated on the conspirators’ capacity to: (a) ensure that the fix takes place as pre-determined; (b) manipulate the betting markets that surround the sporting event in question; and (c) collect their winnings undetected by either the betting industry’s security systems or the attention of any national regulatory body or law enforcement agency.
Unlike many essays on this topic, this contribution does not focus on the “fix”– part (a) of the above equation. It does not seek to explain how or why a participant or sports official might facilitate a betting scam through either on-field behaviour that manipulates the outcome of a game or by presenting others with privileged inside information in advance of a game. Neither does this contribution seek to give any real insight into the second part of the above equation: how such conspirators manipulate a sports betting market by playing or laying the handicap or in-play or other offered betting odds. In fact, this contribution is not really about the mechanics of sports betting or match fixing at all; rather it is about the sometimes under explained reason why match fixing has reportedly become increasingly attractive as of late to international crime syndicates. That reason relates to the fact that given the traditional liquidity of gambling markets, sports betting can, and has long been, an attractively accessible conduit for criminal syndicates to launder the proceeds of crime. Accordingly, the term “winnings”, noted in part (c) of the above equation, takes on an altogether more nefarious meaning.
This essay’s attempt to review the possible links between match fixing in sport, gambling-related “winnings” and money laundering is presented in four parts.
First, some context will be given to what is meant by money laundering, how it is currently policed internationally and, most importantly, how the growth of online gambling presents a unique set of vulnerabilities and opportunities to launder the proceeds of crime. The globalisation of organised crime, sports betting and transnational financial services now means that money laundering opportunities have moved well beyond a flutter on the horses at your local racetrack or at the roulette table of your nearest casino. The growth of online gambling platforms means that at a click it is possible for the proceeds of crime in one jurisdiction to be placed on a betting market in another jurisdiction with the winnings drawn down and laundered in a third jurisdiction and thus the internationalisation of gambling-related money laundering threatens the integrity of sport globally.
Second, and referring back to the infamous hearings of the US Senate Special Committee to Investigate Organised Crime in Interstate Commerce of the early 1950s, (“the Kefauver Committee”), this article will begin by illustrating the long standing interest of organised crime gangs – in this instance, various Mafia families in the United States – in money laundering via sports gambling-related means.
Third, and using the seminal 2009 report “Money Laundering through the Football Sector” by the Financial Action Task Force (FATF, an inter-governmental body established in 1989 to promote effective implementation of legal, regulatory and operational measures for combating money laundering, terrorist financing and other related threats to the integrity of the international financial system), this essay seeks to assess the vulnerabilities of international sport to match fixing, as motivated in part by the associated secondary criminality of tax evasion and transnational economic crime.
The fourth and concluding parts of the essay spin from problems to possible solutions. The underlying premise here is that heretofore there has been an insularity to the way that sports organisations have both conceptualised and sought to address the match fixing threat e.g., if we (in sport) initiate player education programmes; establish integrity units; enforce codes of conduct and sanctions strictly; then our integrity or brand should be protected. This essay argues that, although these initiatives are important, the source and process of match fixing is beyond sport’s current capacity, as are the possible solutions.
Resumo:
The sustainable control of animal parasitic nematodes requires the development of efficient functional genomics platforms to facilitate target validation and enhance anthelmintic discovery. Unfortunately, the utility of RNA interference (RNAi) for the validation of novel drug targets in nematode parasites remains problematic. Ascaris suum is an important veterinary parasite and a zoonotic pathogen. Here we show that adult A. suum is RNAi competent, and highlight the induction, spread and consistency of RNAi across multiple tissue types. This platform provides a new opportunity to undertake whole organism-, tissue- and cell-level gene function studies to enhance target validation processes for nematode parasites of veterinary/medical significance.
Resumo:
This article examines the nature of gender politics in Northern Ireland since the 1998 Good Friday/Belfast Agreement. Taking gender justice as a normative democratic framework, the article argues that despite the promise of women's equal participation in public and political life written into the Agreement, parties have delivered varied responses to integrating women, women's interests and perspectives into politics and policy platforms. This contrasts with general patterns supporting women's increased participation in social and political life. The article discusses women's descriptive and substantive representation through electoral outcomes and party manifestos, using the demands of successive women's manifestos as a benchmark. It concludes that while parties have given less recognition and inclusion to women than one might have expected in a new political context, the push for democratic accountability will ensure that gender politics will continue to have a place on the political agenda for some time to come.
Resumo:
We present a rigorous methodology and new metrics for fair comparison of server and microserver platforms. Deploying our methodology and metrics, we compare a microserver with ARM cores against two servers with ×86 cores running the same real-time financial analytics workload. We define workload-specific but platform-independent performance metrics for platform comparison, targeting both datacenter operators and end users. Our methodology establishes that a server based on the Xeon Phi co-processor delivers the highest performance and energy efficiency. However, by scaling out energy-efficient microservers, we achieve competitive or better energy efficiency than a power-equivalent server with two Sandy Bridge sockets, despite the microserver's slower cores. Using a new iso-QoS metric, we find that the ARM microserver scales enough to meet market throughput demand, that is, a 100% QoS in terms of timely option pricing, with as little as 55% of the energy consumed by the Sandy Bridge server.
Resumo:
Energy efficiency is an essential requirement for all contemporary computing systems. We thus need tools to measure the energy consumption of computing systems and to understand how workloads affect it. Significant recent research effort has targeted direct power measurements on production computing systems using on-board sensors or external instruments. These direct methods have in turn guided studies of software techniques to reduce energy consumption via workload allocation and scaling. Unfortunately, direct energy measurements are hampered by the low power sampling frequency of power sensors. The coarse granularity of power sensing limits our understanding of how power is allocated in systems and our ability to optimize energy efficiency via workload allocation.
We present ALEA, a tool to measure power and energy consumption at the granularity of basic blocks, using a probabilistic approach. ALEA provides fine-grained energy profiling via sta- tistical sampling, which overcomes the limitations of power sens- ing instruments. Compared to state-of-the-art energy measurement tools, ALEA provides finer granularity without sacrificing accuracy. ALEA achieves low overhead energy measurements with mean error rates between 1.4% and 3.5% in 14 sequential and paral- lel benchmarks tested on both Intel and ARM platforms. The sampling method caps execution time overhead at approximately 1%. ALEA is thus suitable for online energy monitoring and optimization. Finally, ALEA is a user-space tool with a portable, machine-independent sampling method. We demonstrate two use cases of ALEA, where we reduce the energy consumption of a k-means computational kernel by 37% and an ocean modelling code by 33%, compared to high-performance execution baselines, by varying the power optimization strategy between basic blocks.
Resumo:
Given the growing interest in thermal processing methods, this study describes the use of an advanced rheological technique, capillary rheometry, to accurately determine the thermorheological properties of two pharmaceutical polymers, Eudragit E100 (E100) and hydroxypropylcellulose JF (HPC) and their blends, both in the presence and absence of a model therapeutic agent (quinine, as the base and hydrochloride salt). Furthermore, the glass transition temperatures (Tg) of the cooled extrudates produced using capillary rheometry were characterised using Dynamic Mechanical Thermal Analysis (DMTA) thereby enabling correlations to be drawn between the information derived from capillary rheometry and the glass transition properties of the extrudates. The shear viscosities of E100 and HPC (and their blends) decreased as functions of increasing temperature and shear rates, with the shear viscosity of E100 being significantly greater than that of HPC at all temperatures and shear rates. All platforms were readily processed at shear rates relevant to extrusion (approximately 200–300 s−1) and injection moulding (approximately 900 s−1). Quinine base was observed to lower the shear viscosities of E100 and E100/HPC blends during processing and the Tg of extrudates, indicative of plasticisation at processing temperatures and when cooled (i.e. in the solid state). Quinine hydrochloride (20% w/w) increased the shear viscosities of E100 and HPC and their blends during processing and did not affect the Tg of the parent polymer. However, the shear viscosities of these systems were not prohibitive to processing at shear rates relevant to extrusion and injection moulding. As the ratio of E100:HPC increased within the polymer blends the effects of quinine base on the lowering of both shear viscosity and Tg of the polymer blends increased, reflecting the greater solubility of quinine within E100. In conclusion, this study has highlighted the importance of capillary rheometry in identifying processing conditions, polymer miscibility and plasticisation phenomena.
Resumo:
The impending and increasing threat of antimicrobial resistance has led to a greater focus into developing alternative therapies as substitutes for traditional antibiotics for the treatment of multi-drug resistant infections.1 Our group has developed a library of short, cost-effective, diphenylalanine-based peptides (X1-FF-X2) which selective eradicate (viability reduced >90% in 24 hours) the most resistant biofilm forms of a range of Gram-positive and negative pathogens including: methicillin resistant and sensitive Staphyloccoccus aureus and Staphyloccoccus epidermidis; Pseudomonas aeruginosa, Proteus mirabilis and Escherichia coli. They demonstrate a reduced cell cytotoxic profile (NCTC929 murine fibroblast) and limited haemolysis.2 Our molecules have the ability respond to subtle changes in pH, associated with bacterial infection, self-assembling to form β-sheet secondary structures and supramolecular hydrogels at low concentrations (~0.5%w/v). Conjugation of variety of aromatic-based drugs at the X1 position, including non-steroidal anti-inflammatories (NSAIDs), confer further pharmacological properties to the peptide motif enhancing their therapeutic potential. In vivo studies using waxworms (Galleria mellonella) provide promising preliminary results demonstrating the low toxicity and high antimicrobial activity of these low molecular weight gelators in animal models. This work shows biofunctional peptide-based nanomaterials hold great promise for future translation to patients as antimicrobial drug delivery and biomaterial platforms.3 [1] G. Laverty, S.P. Gorman and B.F. Gilmore. Int.J.Mol.Sci. 2011, 12, 6566-6596. [2] G. Laverty, A.P. McCloskey, B.F. Gilmore, D.S. Jones, J Zhou, B Xu. Biomacromolecules. 2014, 15, 9, 3429-3439. [3] A.P. McCloskey, B.F. Gilmore and G.Laverty. Pathogens. 2014, 3, 791-821.
Resumo:
The aim of this article was to construct a T–ϕ phase diagram for a model drug (FD) and amorphous polymer (Eudragit® EPO) and to use this information to understand the impact of how temperature–composition coordinates influenced the final properties of the extrudate. Defining process boundaries and understanding drug solubility in polymeric carriers is of utmost importance and will help in the successful manufacture of new delivery platforms for BCS class II drugs. Physically mixed felodipine (FD)–Eudragit® EPO (EPO) binary mixtures with pre-determined weight fractions were analysed using DSC to measure the endset of melting and glass transition temperature. Extrudates of 10 wt% FD–EPO were processed using temperatures (110°C, 126°C, 140°C and 150°C) selected from the temperature–composition (T–ϕ) phase diagrams and processing screw speed of 20, 100 and 200rpm. Extrudates were characterised using powder X-ray diffraction (PXRD), optical, polarised light and Raman microscopy. To ensure formation of a binary amorphous drug dispersion (ADD) at a specific composition, HME processing temperatures should at least be equal to, or exceed, the corresponding temperature value on the liquid–solid curve in a F–H T–ϕ phase diagram. If extruded between the spinodal and liquid–solid curve, the lack of thermodynamic forces to attain complete drug amorphisation may be compensated for through the use of an increased screw speed. Constructing F–H T–ϕ phase diagrams are valuable not only in the understanding drug–polymer miscibility behaviour but also in rationalising the selection of important processing parameters for HME to ensure miscibility of drug and polymer.
Resumo:
Purpose The aim of this study is to improve the drug release properties of antimicrobial agents from hydrophobic biomaterials using using an ion pairing strategy. In so doing antimicrobial agents may be eluted and maintained over a sufficient time period thereby preventing bacterial colonisation and subsequent biofilm formation on medical devices. Methods The model antimicrobial agent was chlorhexidine and the selected fatty acid counter ions were capric acid, myristic acid and stearic acid. The polymethyl methacrylate films were loaded with 2% of fatty acid:antimicrobial agent at the following molar ratios; 0.5:1M, 1:1M and 2:1M and thermally polymerized using azobisisobutyronitrile initiator. Drug release experiments were subsequently performed over a 3-month period and the mass of drug released under sink conditions (pH 7.0, 37oC) quantified using a validated HPLC-UV method. Results In all platforms, a burst of chlorhexidine release was observed over the initial 24-hour period. Similar release kinetics were observed between the formulations during the initial 28 days. However, as time progressed, the chlorhexidine baseline plateaued after 56 days whereas formulations containing the counterions appeared to continuously elute linearly with time. As can be observed in figure 1, the rank order of total chlorhexidine release in the presence of 0.5M fatty acid was myristic acid (40%) > capric acid (35%) > stearic acid (30%)> chlorhexidine baseline (15%). Conclusion The incorporation of fatty acids within the formulation significantly improved chlorhexidine solubility within both the monomer and the polymer and enhanced the drug release kinetics over the period of study. This is attributed to the greater diffusivity of chlorhexidine through PMMA in the presence of fatty acids. In th absence of fatty acids, chlorhexidine release was facilitated by dissolution of surface associated drug particles. This study has illustrated the ability of fatty acids to modulate chlorhexidine release from a model biomaterial through enhanced diffusivity. This strategy may prove advantageous for improved medical devices with enhanced resistance to infection.
Resumo:
Purpose Poor water-solubility of BCS class II drugs can limit their commercialization because of reduced oral bioavailability. It has been reported that loading of drug by adsorption onto porous silica would enhance drug solubility due to the increased surface area available for solvent diffusion. In this work, solid dispersions are formed using supercritical carbon dioxide (scCO2). The aim of this research was to characterise the solid-state properties of scCO2 dispersion and to investigate the impact of altering scCO2 processing conditions on final amorphous product performance that could lead to enhancement of drug dissolution rate for BCS class II drugs. Methods Indomethacin (IND) was purchased from Sigma-Aldrich (Dorset, UK) and was used as a model drug with two grades of high surface area silica (average particle sizes 3&[micro] and 7&[micro]), which were obtained directly from Grace-Davison (Germany). Material crystallinity was evaluated using powder X-ray diffraction (PXRD, Rigaku™, miniflex II, Japan) and high-speed differential scanning calorimetry (Hyper-DSC 8000, Perkin Elmer, USA). Materials were placed in a high-pressure vessel consisting of a CO2 cylinder, a Thar™ Technologies P50 high-pressure pump and a 750 ml high-pressure vessel (Thar, USA). Physical mixtures were exposed to CO2 gas above its critical conditions. SEM imaging and elemental analysis were conducted using a Jeol 6500 FEGSEM (Advanced MicroBeam Inc., Austria). Drug release was examined using USP type II dissolution tester (Caleva™, UK). Results The two grades of silica were found to be amorphous using PXRD and Hyper-DSC. Using PXRD, it was shown that an increase in incubation time and pressure resulted in a decrease in the crystalline content. Drug release profiles from the two different silica formulations prepared under the same conditions are shown in Figure 1. It was found that there was a significant enhancement in drug release, which was influenced, by silica type and other experiment conditions such as temperature, pressure and exposure time. SEM imaging and elemental analysis showed drug deposited inside silica pores as well as on the outer surface. Conclusion This project has shown that silica carrier platforms may be used as an alternative approach to generating polymeric solid dispersions of amorphous drugs exhibiting enhanced solubility.
Resumo:
Selective cell recognition and capture has recently attracted significant interest due to its potential importance for clinical, diagnostic, environmental, and security applications. Current methods for cell isolation from complex samples are largely dependent on cell size and density, with limited application scope as many of the target cells do not exhibit appreciable differences in this respect. The most recent and forthcoming developments in the area of selective recognition and capture of whole cells, based on natural receptors, as well as synthetic materials utilising physical and chemical properties of the target cell or microorganism, are highlighted. Particular focus is given to the development of cell complementary surfaces using the cells themselves as templating agents, by means of molecular imprinting, and their combination with sensing platforms for rapid cell detection in complex media. The benefits and challenges of each approach are discussed and a perspective of the future of this research area is given.