138 resultados para PATHOGEN PYTHIUM-INSIDIOSUM
Resumo:
Outer membrane protein A (OmpA) is a class of proteins highly conserved among the Enterobacteriaceae family and throughout evolution. Klebsiella pneumoniae is a capsulated Gram-negative pathogen. It is an important cause of community-acquired and nosocomial pneumonia. Evidence indicates that K. pneumoniae infections are characterized by a lack of an early inflammatory response. Data from our laboratory indicate that K. pneumoniae CPS helps to suppress the host inflammatory response. However, it is unknown whether K. pneumoniae employs additional factors to modulate host inflammatory responses. Here, we report that K. pneumoniae OmpA is important for immune evasion in vitro and in vivo. Infection of A549 and normal human bronchial cells with 52OmpA2, an ompA mutant, increased the levels of IL-8. 52145-?wca ompA, which does not express CPS and ompA, induced the highest levels of IL-8. Both mutants could be complemented. In vivo, 52OmpA2 induced higher levels of tnfa, kc, and il6 than the wild type. ompA mutants activated NF-?B, and the phosphorylation of p38, p44/42, and JNK MAPKs and IL-8 induction was via NF-?B-dependent and p38- and p44/42-dependent pathways. 52OmpA2 engaged TLR2 and -4 to activate NF-?B, whereas 52145-?wca ompA activated not only TLR2 and TLR4 but also NOD1. Finally, we demonstrate that the ompA mutant is attenuated in the pneumonia mouse model. The results of this study indicate that K. pneumoniae OmpA contributes to attenuate airway cell responses. This may facilitate pathogen survival in the hostile environment of the lung. © 2011 by The American Society for Biochemistry and Molecular Biology, Inc.
Resumo:
The human respiratory tract contains a highly adapted microbiota including commensal and opportunistic pathogens. Noncapsulated or nontypable Haemophilus influenzae (NTHi) is a human-restricted member of the normal airway microbiota in healthy carriers and an opportunistic pathogen in immunocompromised individuals. The duality of NTHi as a colonizer and as a symptomatic infectious agent is closely related to its adaptation to the host, which in turn greatly relies on the genetic plasticity of the bacterium and is facilitated by its condition as a natural competent. The variable genotype of NTHi accounts for its heterogeneous gene expression and variable phenotype, leading to differential host-pathogen interplay among isolates. Here we review our current knowledge of NTHi diversity in terms of genotype, gene expression, antigenic variation, and the phenotypes associated with colonization and pathogenesis. The potential benefits of NTHi diversity studies discussed herein include the unraveling of pathogenicity clues, the generation of tools to predict virulence from genomic data, and the exploitation of a unique natural system for the continuous monitoring of long-term bacterial evolution in human airways exposed to noxious agents. Finally, we highlight the challenge of monitoring both the pathogen and the host in longitudinal studies, and of applying comparative genomics to clarify the meaning of the vast NTHi genetic diversity and its translation to virulence phenotypes.
Resumo:
Phagocytosis is a key process of the immune system. The human pathogen Klebsiella pneumoniae is a well known example of a pathogen highly resistant to phagocytosis. A wealth of evidence demonstrates that the capsule polysaccharide (CPS) plays a crucial role in resistance to phagocytosis. The amoeba Dictyostelium discoideum shares with mammalian macrophages the ability to phagocytose and kill bacteria. The fact that K. pneumoniae is ubiquitous in nature and, therefore, should avoid predation by amoebae, poses the question whether K. pneumoniae employs similar means to counteract amoebae and mammalian phagocytes. Here we developed an assay to evaluate K. pneumoniae-D. discoideum interaction. The richness of the growth medium affected the threshold at which the cps mutant was permissive for Dictyostelium and only at lower nutrient concentrations the cps mutant was susceptible to predation by amoebae. Given the critical role of bacterial surface elements on host-pathogen interactions, we explored the possible contribution of the lipopolysaccharide (LPS) and outer membrane proteins (OMPs) to combat phagoyctosis by D. discoideum. We uncover that, in addition to the CPS, the LPS O-polysaccharide and the first core sugar participate in Klebsiella resistance to predation by D. discoideum. K. pneumoniae LPS lipid A decorations are also necessary to avoid predation by amoebae although PagP-dependent palmitoylation plays a more important role than the lipid A modification with aminoarabinose. Mutants lacking OMPs OmpA or OmpK36 were also permissive for D. discoideium growth. Except the LPS O-polysaccharide mutants, all mutants were more susceptible to phagocytosis by mouse alveolar macrophages. Finally, we found a correlation between virulence, using the pneumonia mouse model, and resistance to phagocytosis. Altogether, this work reveals novel K. pneumoniae determinants involved in resistance to phagocytosis and supports the notion that Dictyostelium amoebae might be useful as host model to measure K. pneumoniae virulence and not only phagocytosis. © 2013 March et al.
The lipopolysaccharide core of Brucella abortus acts as a shield against innate immunity recognition
Resumo:
Innate immunity recognizes bacterial molecules bearing pathogen-associated molecular patterns to launch inflammatory responses leading to the activation of adaptive immunity. However, the lipopolysaccharide (LPS) of the gram-negative bacterium Brucella lacks a marked pathogen-associated molecular pattern, and it has been postulated that this delays the development of immunity, creating a gap that is critical for the bacterium to reach the intracellular replicative niche. We found that a B. abortus mutant in the wadC gene displayed a disrupted LPS core while keeping both the LPS O-polysaccharide and lipid A. In mice, the wadC mutant induced proinflammatory responses and was attenuated. In addition, it was sensitive to killing by non-immune serum and bactericidal peptides and did not multiply in dendritic cells being targeted to lysosomal compartments. In contrast to wild type B. abortus, the wadC mutant induced dendritic cell maturation and secretion of pro-inflammatory cytokines. All these properties were reproduced by the wadC mutant purified LPS in a TLR4-dependent manner. Moreover, the core-mutated LPS displayed an increased binding to MD-2, the TLR4 co-receptor leading to subsequent increase in intracellular signaling. Here we show that Brucella escapes recognition in early stages of infection by expressing a shield against recognition by innate immunity in its LPS core and identify a novel virulence mechanism in intracellular pathogenic gram-negative bacteria. These results also encourage for an improvement in the generation of novel bacterial vaccines.
Resumo:
Antimicrobial peptides (APs) impose a threat to the survival of pathogens, and it is reasonable to postulate that bacteria have developed strategies to counteract them. Polymyxins are becoming the last resort to treat infections caused by multidrug-resistant Gram-negative bacteria and, similar to APs, they interact with the anionic lipopolysaccharide. Given that polymyxins and APs share the initial target, it is possible that bacterial defense mechanisms against polymyxins will be also effective against host APs. We sought to determine whether exposure to polymyxin will increase Klebsiella pneumoniae resistance to host APs. Indeed, exposure of K. pneumoniae to polymyxin induces cross-resistance not only to polymyxin itself but also to APs present in the airways. Polymyxin treatment upregulates the expression of the capsule polysaccharide operon and the loci required to modify the lipid A with aminoarabinose and palmitate with a concomitant increase in capsule and lipid A species containing such modifications. Moreover, these surface changes contribute to APs resistance and also to polymyxin-induced cross-resistance to APs. Bacterial loads of lipid A mutants in trachea and lungs of intranasally infected mice were lower than those of wild-type strain. PhoPQ, PmrAB, and the Rcs system govern polymyxin-induced transcriptional changes, and there is a cross talk between PhoPQ and the Rcs system. Our findings support the notion that Klebsiella activates a defense program against APs that is controlled by three signaling systems. Therapeutic strategies directed to prevent the activation of this program could be a new approach worth exploring to facilitate the clearance of the pathogen from the airways.
Resumo:
Non-typable Haemophilus influenzae (NTHi) is a gram negative pathogen that causes acute respiratory infections and is associated with the progression of chronic respiratory diseases. Previous studies have established the existence of a remarkable genetic variability among NTHi strains. In this study we show that, in spite of a high level of genetic heterogeneity, NTHi clinical isolates display a prevalent molecular feature, which could confer fitness during infectious processes. A total of 111 non-isogenic NTHi strains from an identical number of patients, isolated in two distinct geographical locations in the same period of time, were used to analyse nine genes encoding bacterial surface molecules, and revealed the existence of one highly prevalent molecular pattern (lgtF+, lic2A+, lic1D+, lic3A+, lic3B+, siaA-, lic2C+, ompP5+, oapA+) displayed by 94.6% of isolates. Such a genetic profile was associated with a higher bacterial resistance to serum mediated killing and enhanced adherence to human respiratory epithelial cells.
Resumo:
Nontypable Haemophilus influenzae (NTHi) is a Gram-negative, non-capsulated human bacterial pathogen, a major cause of a repertoire of respiratory infections, and intimately associated with persistent lung bacterial colonization in patients suffering from chronic obstructive pulmonary disease (COPD). Despite its medical relevance, relatively little is known about its mechanisms of pathogenicity. In this study, we found that NTHi invades the airway epithelium by a distinct mechanism, requiring microtubule assembly, lipid rafts integrity, and activation of phosphatidylinositol 3-kinase (PI3K) signalling. We found that the majority of intracellular bacteria are located inside an acidic subcellular compartment, in a metabolically active and non-proliferative state. This NTHi-containing vacuole (NTHi-CV) is endowed with late endosome features, co-localizing with LysoTracker, lamp-1, lamp-2, CD63 and Rab7. The NTHi-CV does not acquire Golgi- or autophagy-related markers. These observations were extended to immortalized and primary human airway epithelial cells. By using NTHi clinical isolates expressing different amounts of phosphocholine (PCho), a major modification of NTHi lipooligosaccharide, on their surfaces, and an isogenic lic1BC mutant strain lacking PCho, we showed that PCho is not responsible for NTHi intracellular location. In sum, this study indicates that NTHi can survive inside airway epithelial cells.
Resumo:
Yersinia enterocolitica is an important human pathogen. Y. enterocolitica must adapt to the host environment, and temperature is an important cue regulating the expression of most Yersinia virulence factors. Here, we report that Y. enterocolitica 8081 serotype O:8 synthesized tetra-acylated lipid A at 37 degrees C but that hexa-acylated lipid A predominated at 21 degrees C. By mass spectrometry and genetic methods, we have shown that the Y. enterocolitica msbB, htrB, and lpxP homologues encode the acyltransferases responsible for the addition of C(12), C(14) and C(16:1), respectively, to lipid A. The expression levels of the acyltransferases were temperature regulated. Levels of expression of msbB and lpxP were higher at 21 degrees C than at 37 degrees C, whereas the level of expression of htrB was higher at 37 degrees C. At 21 degrees C, an lpxP mutant was the strain most susceptible to polymyxin B, whereas at 37 degrees C, an htrB mutant was the most susceptible. We present evidence that the lipid A acylation status affects the expression of Yersinia virulence factors. Thus, expression of flhDC, the flagellar master regulatory operon, was downregulated in msbB and lpxP mutants, with a concomitant decrease in motility. Expression of the phospholipase yplA was also downregulated in both mutants. inv expression was downregulated in msbB and htrB mutants, and consistent with this finding, invasion of HeLa cells was diminished. However, the expression of rovA, the positive regulator of inv, was not affected in the mutants. The levels of pYV-encoded virulence factors Yops and YadA in the acyltransferase mutants were not affected. Finally, we show that only the htrB mutant was attenuated in vivo.
Resumo:
Nontypeable Haemophilus influenzae (NTHI) is an opportunistic gram-negative pathogen that causes respiratory infections and is associated with progression of respiratory diseases. Cigarette smoke is a main risk factor for development of respiratory infections and chronic respiratory diseases. Glucocorticoids, which are anti-inflammatory drugs, are still the most common therapy for these diseases. Alveolar macrophages are professional phagocytes that reside in the lung and are responsible for clearing infections by the action of their phagolysosomal machinery and promotion of local inflammation. In this study, we dissected the interaction between NTHI and alveolar macrophages and the effect of cigarette smoke on this interaction. We showed that alveolar macrophages clear NTHI infections by adhesion, phagocytosis, and phagolysosomal processing of the pathogen. Bacterial uptake requires host actin polymerization, the integrity of plasma membrane lipid rafts, and activation of the phosphatidylinositol 3-kinase (PI3K) signaling cascade. Parallel to bacterial clearance, macrophages secrete tumor necrosis factor alpha (TNF-alpha) upon NTHI infection. In contrast, exposure to cigarette smoke extract (CSE) impaired alveolar macrophage phagocytosis, although NTHI-induced TNF-alpha secretion was not abrogated. Mechanistically, our data showed that CSE reduced PI3K signaling activation triggered by NTHI. Treatment of CSE-exposed cells with the glucocorticoid dexamethasone reduced the amount of TNF-alpha secreted upon NTHI infection but did not compensate for CSE-dependent phagocytic impairment. The deleterious effect of cigarette smoke was observed in macrophage cell lines and in human alveolar macrophages obtained from smokers and from patients with chronic obstructive pulmonary disease.
Resumo:
Klebsiella pneumoniae is a capsulated Gram negative bacterial pathogen and a frequent cause of nosocomial infections. Despite its clinical relevance, little is known about the features of the interaction between K. pneumoniae and lung epithelial cells on a cellular level, neither about the role of capsule polysaccharide, one of its best characterised virulence factors, in this interaction.
Resumo:
Nutrition is critical to immune defence and parasite resistance, which not only affects individual organisms, but also has profound ecological and evolutionary consequences. Nutrition and immunity are complex traits that interact via multiple direct and indirect pathways, including the direct effects of nutrition on host immunity but also indirect effects mediated by the host's microbiota and pathogen populations. The challenge remains, however, to capture the complexity of the network of interactions that defines nutritional immunology. The aim of this paper is to discuss the recent findings in nutritional research in the context of immunological studies. By taking examples from the entomological literature, we argue that insects provide a powerful tool for examining the network of interactions between nutrition and immunity due to their tractability, short lifespan and ethical considerations. We describe the relationships between dietary composition, immunity, disease and microbiota in insects, and highlight the importance of adopting an integrative and multi-dimensional approach to nutritional immunology.
Resumo:
Bacterial aminopeptidases play important roles in pathogenesis by providing a source of amino acids from exogenous proteins, destroying host immunological effector peptides and executing posttranslational modification of bacterial and host proteins. We show that MHJ_0125 from the swine respiratory pathogen Mycoplasma hyopneumoniae represents a new member of the M42 class of bacterial aminopeptidases. Despite lacking a recognizable signal sequence, MHJ_0125 is detectable on the cell surface by fluorescence microscopy and LC-MS/MS of (i) biotinylated surface proteins captured by avidin chromatography and (ii) peptides released by mild trypsin shaving. Furthermore, surface-associated glutamyl aminopeptidase activity was detected by incubation of live M. hyopneumoniae cells with the diagnostic substrate H-Glu-AMC. MHJ_0125 moonlights as a multifunctional adhesin, binding to both heparin and plasminogen. Native proteomics and comparative modelling studies suggest MHJ_0125 forms a dodecameric, homopolymeric structure and provide insight into the positions of key residues that are predicted to interact with heparin and plasminogen. MHJ_0125 is the first aminopeptidase shown to both bind plasminogen and facilitate its activation by tissue plasminogen activator. Plasmin cleaves host extracellular matrix proteins and activates matrix metalloproteases, generating peptide substrates for MHJ_0125 and a source of amino acids for growth of M. hyopneumoniae. This unique interaction represents a new paradigm in microbial pathogenesis.
Resumo:
A mechanism of dual enlargement of gold nanoparticles (AuNPs) comprising two steps is described. In the first step, the AuNPs are enlarged by depositing Au atoms on their crystalline faces. In this process, the particles are not only enlarged but they are also observed to multiply: new Au nuclei are formed by the budding and division of the enlarged particles. In the second step, a silver enhancement is subsequently performed by the deposition of silver atoms on the enlarged and newly formed AuNPs to generate bimetallic Au@Ag core-shell structures. The dual nanocatalysis greatly enhances the electron density of the nanostructures, leading to a stronger intensity for colorimetric discrimination as well as better sensitivity for quantitative measurement. Based on this, a simple scanometric assay for the on-slide detection of the food-born pathogen Campylobacter jejuni is developed. After capturing the target bacteria, gold-tagged immunoprobes are added to create a signal on a solid substrate. The signal is then amplified by the dual enlargement process, resulting in a strong color intensity that can easily be recognized by the unaided eye, or measured by an inexpensive flatbed scanner. In this paper, dual nanocatalysis is reported for the first time. It provides a valuable mechanistic insight into the development of a simple and cost-effective detection format.
Resumo:
Consumers trust commercial food production to be safe, and it is important to strive to improve food safety at every level. Several outbreaks of food-borne disease have been caused by Salmonella strains associated with dried food. Currently we do not know the mechanisms used by Salmonella enterica serovar Typhimurium to survive in desiccated environments. The aim of this study was to discover the responses of S. Typhimurium ST4/74 at the transcriptional level to desiccation on a stainless steel surface and to subsequent rehydration. Bacterial cells were dried onto the same steel surfaces used during the production of dry foods, and RNA was recovered for transcriptomic analysis. Subsequently, dried cells were rehydrated and were again used for transcriptomic analysis. A total of 266 genes were differentially expressed under desiccation stress compared with a static broth culture. The osmoprotectant transporters proP, proU, and osmU (STM1491 to STM1494) were highly upregulated by drying. Deletion of any one of these transport systems resulted in a reduction in the long-term viability of S. Typhimurium on a stainless steel food contact surface. The proP gene was critical for survival; proP deletion mutants could not survive desiccation for long periods and were undetectable after 4 weeks. Following rehydration, 138 genes were differentially expressed, with upregulation observed for genes such as proP, proU, and the phosphate transport genes (pstACS). In time, this knowledge should prove valuable for understanding the underlying mechanisms involved in pathogen survival and should lead to improved methods for control to ensure the safety of intermediate-and low-moisture foods. © 2013, American Society for Microbiology.
Resumo:
To examine the effect of elevated pH, as reported during urinary catheter infections, on quinolone activity against the urease-producing pathogen Proteus mirabilis.