145 resultados para Oncogenic viruses
Resumo:
Phylogenetic analysis of the sequence of the H gene of 75 measles virus (MV) strains (32 published and 43 new sequences) was carried out. The lineage groups described from comparison of the nucleotide sequences encoding the C-terminal regions of the N protein of MV were the same as those derived from the H gene sequences in almost all cases. The databases document a number of distinct genotype switches that have occurred in Madrid (Spain). Well-documented is the complete replacement of lineage group C2, the common European genotype at that time, with that of group D3 around the autumn of 1993. No further isolations of group C2 took place in Madrid after this time. The rate of mutation of the H gene sequences of MV genotype D3 circulating in Madrid from 1993 to 1996 was very low (5 x 10(-4) per annum for a given nucleotide position). This is an order of magnitude lower than the rates of mutation observed in the HN genes of human influenza A viruses. The ratio of expressed over silent mutations indicated that the divergence was not driven by immune selection in this gene. Variations in amino acid 117 of the H protein (F or L) may be related to the ability of some strains to haemagglutinate only in the presence of salt. Adaptation of MV to different primate cell types was associated with very small numbers of mutations in the H gene. The changes could not be predicted when virus previously grown in human B cell lines was adapted to monkey Vero cells. In contrast, rodent brain-adapted viruses displayed a lot of amino acid sequence variation from normal MV strains. There was no convincing evidence for recombination between MV genotypes.
Resumo:
In this paper, a coupling of fluorophore-DNA barcode and bead-based immunoassay for detecting avian influenza virus (AIV) with PCR-like sensitivity is reported. The assay is based on the use of sandwich immunoassay and fluorophore-tagged oligonucleotides as representative barcodes. The detection involves the sandwiching of the target AIV between magnetic immunoprobes and barcode-carrying immunoprobes. Because each barcode-carrying immunoprobe is functionalized with a multitude of fluorophore-DNA barcode strands, many DNA barcodes are released for each positive binding event resulting in amplification of the signal. Using an inactivated H16N3 AIV as a model, a linear response over five orders of magnitude was obtained, and the sensitivity of the detection was comparable to conventional RT-PCR. Moreover, the entire detection required less than 2 hr. The results indicate that the method has great potential as an alternative for surveillance of epidemic outbreaks caused by AIV, other viruses and microorganisms.
Resumo:
We developed an analytic strategy that correlates gene expression and clinical outcomes as a means to identify novel candidate oncogenes operative in breast cancer. This analysis, followed by functional characterization, resulted in the identification of Jumonji Domain Containing 6 (JMJD6) protein as a novel driver of oncogenic properties in breast cancer.
Resumo:
Understanding the molecular etiology of cancer and increasing the number of drugs and their targets are critical to cancer management. In our attempt to unravel novel breast-cancer associated proteins, we previously conducted protein expression profiling of the MCF10AT model, which comprises a series of isogenic cell lines that mimic different stages of breast cancer progression. NRD1 expression was found to increase during breast cancer progression. Here, we attempted to confirm the relevance of NRD1 in clinical breast cancer and understand the functional role and mechanism of NRD1 in breast cancer cells. Immunohistochemistry data show that NRD1 expression was elevated in ductal carcinoma in situ and invasive ductal carcinomas compared with normal tissues in 30% of the 26 matched cases studied. Examination of NRD1 expression in tissue microarray comprising >100 carcinomas and subsequent correlation with clinical data revealed that NRD1 expression was significantly associated with tumor size, grade, and nodal status (P <0.05). Silencing of NRD1 reduced MCF10CA1h and MDA-MD-231 breast-cancer-cell proliferation and growth. Probing the oncogenic EGF signaling pathways revealed that NRD1 knock down did not affect overall downstream tyrosine phosphorylation cascades including AKT and MAPK activation. Instead, silencing of NRD1 resulted in a reduction of overall cyclin D1 expression, a reduction of EGF-induced increase in cyclin D1 expression and an increase in apoptotic cell population compared with control cells.
Resumo:
The Runt domain transcription factor, RUNX3, has been shown to be a tumor suppressor in a variety of cancers including gastric, colon and breast cancer. Interestingly, an oncogenic role for RUNX3 has also been suggested in basal cell carcinoma and head and neck cancer. Here, we explore the role of RUNX3 in ovarian cancer.
Resumo:
Background: Natural Killer Cells (NK) play an important role in detection and elimination of virus-infected, damaged or cancer cells. NK cell function is guided by expression of Killer Immunoglobulin-like Receptors (KIRs) and contributed to by the cytokine milieu. KIR molecules are grouped on NK cells into stimulatory and inhibitory KIR haplotypes A and B, through which NKs sense and tolerate HLA self-antigens or up-regulate the NK-cytotoxic response to cells with altered HLA self-antigens, damaged by viruses or tumours. We have previously described increased numbers of NK and NK-related subsets in association with sIL-2R cytokine serum levels in BELFAST octo/nonagenarians. We hypothesised that changes in KIR A and B haplotype gene frequencies could explain the increased cytokine profiles and NK compartments previously described in Belfast Elderly Longitudinal Free-living Aging STudy (BELFAST) octo/nonagenarians, who show evidence of ageing well.
Results: In the BELFAST study, 24% of octo/nonagenarians carried the KIR A haplotype and 76% KIR B haplotype with no differences for KIR A haplogroup frequency between male or female subjects (23% v 24%; p=0.88) or for KIR B haplogroup (77% v 76%; p=0.99). Octo/nonagenarian KIR A haplotype carriers showed increased NK numbers and percentage compared to Group B KIR subjects (p=0.003; p=0.016 respectively). There were no KIR A/ B haplogroup-associated changes for related CD57+CD8 (high or low) subsets. Using logistic regression, KIR B carriers were predicted to have higher IL-12 cytokine levels compared to KIR A carriers by about 3% (OR 1.03, confidence limits CI 0.99–1.09; p=0.027) and 14% higher levels for TGF-ß (active), a cytokine with an anti-inflammatory role, (OR 1.14, confidence limits CI 0.99–1.09; p=0.002).
Conclusion: In this observational study, BELFAST octo/nonagenarians carrying KIR A haplotype showed higher NK cell numbers and percentage compared to KIR B carriers. Conversely, KIR B haplotype carriers, with genes encoding for activating KIRs, showed a tendency for higher serum pro-inflammatory cytokines compared to KIR A carriers. While the findings in this study should be considered exploratory they may serve to stimulate debate about the immune signatures of those who appear to age slowly and who represent a model for good quality survivor-hood.© 2013 Rea et al.; licensee BioMed Central Ltd.
Resumo:
Metastasis-associated phosphatase of regenerating liver-3 (PRL-3) has pleiotropic effects in driving cancer progression, yet the signaling mechanisms of PRL-3 are still not fully understood. Here, we provide evidence for PRL-3-induced hyperactivation of EGFR and its downstream signaling cascades in multiple human cancer cell lines. Mechanistically, PRL-3-induced activation of EGFR was attributed primarily to transcriptional downregulation of protein tyrosine phosphatase 1B (PTP1B), an inhibitory phosphatase for EGFR. Functionally, PRL-3-induced hyperactivation of EGFR correlated with increased cell growth, promigratory characteristics, and tumorigenicity. Moreover, PRL-3 induced cellular addiction to EGFR signaling, as evidenced by the pronounced reversion of these oncogenic attributes upon EGFR-specific inhibition. Of clinical significance, we verified elevated PRL-3 expression as a predictive marker for favorable therapeutic response in a heterogeneous colorectal cancer (CRC) patient cohort treated with the clinically approved anti-EGFR antibody cetuximab. The identification of PRL-3-driven EGFR hyperactivation and consequential addiction to EGFR signaling opens new avenues for inhibiting PRL-3-driven cancer progression. We propose that elevated PRL-3 expression is an important clinical predictive biomarker for favorable anti-EGFR cancer therapy.
Resumo:
There is a paradox between the remarkable genetic stability of measles virus (MV) in the field and the high mutation rates implied by the frequency of the appearance of monoclonal antibody escape mutants generated when the virus is pressured to revert in vitro (S. J. Schrag, P. A. Rota, and W. J. Bellini, J. Virol. 73: 51-54, 1999). We established a highly sensitive assay to determine frequencies of various categories of mutations in large populations of wild-type and laboratory-adapted MVs using recombinant viruses containing an additional transcription unit (ATU) encoding enhanced green fluorescent protein (EGFP). Single and double mutations were made in the fluorophore of EGFP to ablate fluorescence. The frequencies of reversion mutants in the population were determined by measuring the appearance of fluorescence indicating a revertant virus. This allows mutation rates to be measured under nonselective conditions, as phenotypic reversion to fluorescence requires only either a single-or a double-nucleotide change and amino acid substitution, which does not affect the length of the nonessential reporter protein expressed from the ATU. Mutation rates in MV are the same for wild-type and laboratory-adapted viruses, and they are an order of magnitude lower than the previous measurement assessed under selective conditions. The actual mutation rate for MV is approximately 1.8 x 10(-6) per base per replication event. Copyright © 2013, American Society for Microbiology. All Rights Reserved.
Resumo:
p130(Cas) (crk associated substrate) has the structural characteristics of an adapter protein, containing multiple consensus SH2 binding sites, an SH3 domain, and a proline-rich domain. The structure of p130(Cas) suggests that it may act to provide a framework for protein-protein interactions; however, as yet, its functional role in cells is unknown. In this report we show that p130(Cas) is localized to focal adhesions. We demonstrate that p130(Cas) associates both in vitro and in vivo with pp125(FAK) (focal adhesion kinase), a kinase implicated in signaling by the integrin family of cell adhesion receptors. p130(Cas) also associates with pp41/43(FRNK) (pp125(FAK)-related, non-kinase), an autonomously expressed form of pp125(FAK) composed of only the C-terminal noncatalytic domain. We show that the association of p130(Cas) with pp125(Fak) and pp41/43(FRNK) is direct, and is mediated by the binding of the SH3 domain of p130(Cas) to a proline-rich sequence present in both the C terminus of pp125(FAK) and in pp41/43(FRNK). In agreement with recent studies we show that p130(Cas) is tyrosine-phosphorylated upon integrin mediated cell adhesion. The association of p130(Cas) with pp125(FAK), a kinase which is activated upon cell adhesion, is likely to be functionally important in integrin mediated signal transduction.
Resumo:
Deregulated NOTCH1 has been reported in lymphoid leukaemia, although its role in chronic myeloid leukaemia (CML) is not well established. We previously reported BCR-ABL down-regulation of a novel haematopoietic regulator, CCN3, in CML; CCN3 is a non-canonical NOTCH1 ligand. This study characterizes the NOTCH1–CCN3 signalling axis in CML. In K562 cells, BCR-ABL silencing reduced full-length NOTCH1 (NOTCH1-FL) and inhibited the cleavage of NOTCH1 intracellular domain (NOTCH1-ICD), resulting in decreased expression of the NOTCH1 targets c-MYC and HES1. K562 cells stably overexpressing CCN3 (K562/CCN3) or treated with recombinant CCN3 (rCCN3) showed a significant reduction in NOTCH1 signalling (> 50% reduction in NOTCH1-ICD, p < 0.05). Gamma secretase inhibitor (GSI), which blocks NOTCH1 signalling, reduced K562/CCN3 colony formation but increased that of K562/control cells. GSI combined with either rCCN3 or imatinib reduced K562 colony formation with enhanced reduction of NOTCH1 signalling observed with combination treatments. We demonstrate an oncogenic role for NOTCH1 in CML and suggest that BCR-ABL disruption of NOTCH1–CCN3 signalling contributes to the pathogenesis of CML.
Resumo:
Esophageal adenocarcinoma is a cancer with rising incidence and poor survival. Most such cancers arise in a specialized intestinal metaplastic epithelium, which is diagnostic of Barrett's esophagus. In a genome-wide association study, we compared esophageal adenocarcinoma cases (n = 2,390) and individuals with precancerous Barrett's esophagus (n = 3,175) with 10,120 controls in 2 phases. For the combined case group, we identified three new associations. The first is at 19p13 (rs10419226: P = 3.6 × 10(-10)) in CRTC1 (encoding CREB-regulated transcription coactivator), whose aberrant activation has been associated with oncogenic activity. A second is at 9q22 (rs11789015: P = 1.0 × 10(-9)) in BARX1, which encodes a transcription factor important in esophageal specification. A third is at 3p14 (rs2687201: P = 5.5 × 10(-9)) near the transcription factor FOXP1, which regulates esophageal development. We also refine a previously reported association with Barrett's esophagus near the putative tumor suppressor gene FOXF1 at 16q24 and extend our findings to now include esophageal adenocarcinoma.
Resumo:
TBX2 is an oncogenic transcription factor known to drive breast cancer proliferation. We have identified the cysteine protease inhibitor Cystatin 6 (CST6) as a consistently repressed TBX2 target gene, co-repressed through a mechanism involving Early Growth Response 1 (EGR1). Exogenous expression of CST6 in TBX2-expressing breast cancer cells resulted in significant apoptosis whilst non-tumorigenic breast cells remained unaffected. CST6 is an important tumor suppressor in multiple tissues, acting as a dual protease inhibitor of both papain-like cathepsins and asparaginyl endopeptidases (AEPs) such as Legumain (LGMN). Mutation of the CST6 LGMN-inhibitory domain completely abrogated its ability to induce apoptosis in TBX2-expressing breast cancer cells, whilst mutation of the cathepsin-inhibitory domain or treatment with a pan-cathepsin inhibitor had no effect, suggesting that LGMN is the key oncogenic driver enzyme. LGMN activity assays confirmed the observed growth inhibitory effects were consistent with CST6 inhibition of LGMN. Knockdown of LGMN and the only other known AEP enzyme (GPI8) by siRNA confirmed that LGMN was the enzyme responsible for maintaining breast cancer proliferation. CST6 did not require secretion or glycosylation to elicit its cell killing effects, suggesting an intracellular mode of action. Finally, we show that TBX2 and CST6 displayed reciprocal expression in a cohort of primary breast cancers with increased TBX2 expression associating with increased metastases. We have also noted that tumors with altered TBX2/CST6 expression show poor overall survival. This novel TBX2-CST6-LGMN signaling pathway, therefore, represents an exciting opportunity for the development of novel therapies to target TBX2 driven breast cancers.
Resumo:
Activation of the MET oncogenic pathway has been implicated in the development of aggressive cancers that are difficult to treat with current chemotherapies. This has led to an increased interest in developing novel therapies that target the MET pathway. However, most existing drug modalities are confounded by their inability to specifically target and/or antagonize this pathway. Anticalins, a novel class of monovalent small biologics, are hypothesized to be "fit for purpose" for developing highly specific and potent antagonists of cancer pathways. Here, we describe a monovalent full MET antagonist, PRS-110, displaying efficacy in both ligand-dependent and ligand-independent cancer models. PRS-110 specifically binds to MET with high affinity and blocks hepatocyte growth factor (HGF) interaction. Phosphorylation assays show that PRS-110 efficiently inhibits HGF-mediated signaling of MET receptor and has no agonistic activity. Confocal microscopy shows that PRS-110 results in the trafficking of MET to late endosomal/lysosomal compartments in the absence of HGF. In vivo administration of PRS-110 resulted in significant, dose-dependent tumor growth inhibition in ligand-dependent (U87-MG) and ligand-independent (Caki-1) xenograft models. Analysis of MET protein levels on xenograft biopsy samples show a significant reduction in total MET following therapy with PRS-110 supporting its ligand-independent mechanism of action. Taken together, these data indicate that the MET inhibitor PRS-110 has potentially broad anticancer activity that warrants evaluation in patients.
Resumo:
The role of bacteria and viruses as aetiological agents in the pathogenesis of cancer has been well established for several sites, including a number of haematological malignancies. Less clear is the impact of such exposures on the subsequent development of multiple myeloma (MM). Using the population-based U.S. Surveillance Epidemiology and End Results-Medicare dataset, 15,318 elderly MM and 200,000 controls were identified to investigate the impact of 14 common community-acquired infections and risk of MM. Odds ratios (ORs) and associated 95% confidence intervals (CIs) were adjusted for sex, age and calendar year of selection. The 13-month period prior to diagnosis/selection was excluded. Risk of MM was increased by 5-39% following Medicare claims for eight of the investigated infections. Positive associations were observed for several infections including bronchitis (adjusted OR 1.14, 95% CI 1.09-1.18), sinusitis (OR 1.15, 95% CI 1.10-1.20) pneumonia (OR 1.27, 95% CI 1.21-1.33), herpes zoster (OR 1.39, 95% CI 1.29-1.49) and cystitis (OR 1.09, 95% CI 1.05-1.14). Each of these infections remained significantly elevated following the exclusion of more than 6 years of claims data. Exposure to infectious antigens may therefore play a role in the development of MM. Alternatively, the observed associations may be a manifestation of an underlying immune disturbance present several years prior to MM diagnosis and thereby part of the natural history of disease progression.
Resumo:
This study investigates potential causes of a novel blister-like syndrome in the plating coral Echinopora lamellosa. Visual inspections of this novel coral syndrome showed no obvious signs of macroparasites and the blisters themselves manifested as fluid-filled sacs on the surface of the coral, which rose from the coenosarc between the coral polyps. Histological analysis of the blisters showed that there was no associated necrosis with the epidermal or gastrodermal tissues. The only difference between blistered areas and apparently healthy tissues was the presence of proliferated growth (possible mucosal cell hyperplasia) directly at the blister interface (area between where the edge of the blister joined apparently healthy tissue). No bacterial aggregates were identified in any histological samples, nor any sign of tissue necrosis identified. We conclude, that the blister formations are not apparently caused by a specific microbial infection, but instead may be the result of irritation following growth anomalies of the epidermis. However, future work should be conducted to search for other potential casual agents, including viruses. © 2014 Smith et al.