105 resultados para Nickel-cadmium batteries


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electrochemical performance of one-dimensional porous La0.5Sr0.5CoO2.91 nanotubes as a cathode catalyst for rechargeable nonaqueous lithium-oxygen (Li-O2) batteries is reported here for the first time. In this study, one-dimensional porous La0.5Sr0.5CoO2.91 nanotubes were prepared by a simple and efficient electrospinning technique. These materials displayed an initial discharge capacity of 7205 mAh g-1 with a plateau at around 2.66 V at a current density of 100 mA g-1. It was found that the La0.5Sr0.5CoO2.91 nanotubes promoted both oxygen reduction and oxygen evolution reactions in alkaline media and a nonaqueous electrolyte, thereby improving the energy and coulombic efficiency of the Li-O2 batteries. The cyclability was maintained for 85 cycles without any sharp decay under a limited discharge depth of 1000 mAh g-1, suggesting that such a bifunctional electrocatalyst is a promising candidate for the oxygen electrode in Li-O2 batteries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe a novel strategy for in situ fabrication of hierarchical Fe3O4 nanoclusters-GAs. Fe3O4 NCs-GAs deliver excellent rate capability (the reversible capacities obtained were 1442, 392 and 118 mA h g-1 at 0.1C, 12C and 35C rates), and a high reversible capacity of 577 mA h g-1 over 300 cycles at the current density of 5.2 A g-1 (6C).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A three-dimensional (3D) graphene-Co3O4 electrode was prepared by a two-step method in which graphene was initially deposited on a Ni foam with Co3O4 then grown on the resulting graphene structure. Cross-linked Co3O4 nanosheets with an open pore structure were fully and vertically distributed throughout the graphene skeleton. The free-standing and binder-free monolithic electrode was used directly as a cathode in a Li-O2 battery. This composite structure exhibited enhanced performance with a specific capacity of 2453 mA h g-1 at 0.1 mA cm-2 and 62 stable cycles with 583 mA h g-1 (1000 mA h gcarbon-1). The excellent electrochemical performance is associated with the unique architecture and superior catalytic activity of the 3D electrode. 

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, an economical route based on hydrothermal and layer-by-layer (LBL) self-assembly processes has been developed to synthesize unique Al 2O3-modified LiV3O8 nanosheets, comprising a core of LiV3O8 nanosheets and a thin Al 2O3 nanolayer. The thickness of the Al2O 3 nanolayer can be tuned by altering the LBL cycles. When evaluated for their lithium-storage properties, the 1 LBL Al2O 3-modified LiV3O8 nanosheets exhibit a high discharge capacity of 191 mA h g-1 at 300 mA g-1 (1C) over 200 cycles and excellent rate capability, demonstrating that enhanced physical and/or chemical properties can be achieved through proper surface modification. © 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe a simple strategy, which is based on the idea of space confinement, for the synthesis of carbon coating on LiFePO4 nanoparticles/graphene nanosheets composites in a water-in-oil emulsion system. The prepared composite displayed high performance as a cathode material for lithium-ion battery, such as high reversible lithium storage capacity (158 mA h g-1 after 100 cycles), high coulombic efficiency (over 97%), excellent cycling stability and high rate capability (as high as 83 mA h g -1 at 60 C). Very significantly, the preparation method employed can be easily adapted and be extended as a general approach to sophisticated compositions and structures for the preparation of highly dispersed nanosized structure on graphene. 

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A facile method to synthesize well-dispersed TiO2 quantum dots on graphene nanosheets (TiO2-QDs/GNs) in a water-in-oil (W/O) emulsion system is reported. The TiO2/graphene composites display high performance as an anode material for lithium-ion batteries (LIBs), such as having high reversible lithium storage capacity, high Coulombic efficiency, excellent cycling stability, and high rate capability. The excellent electrochemical performance and special structure of the composites thus offer a way to prepare novel graphene-based electrode materials for high-energy-density and high-power LIBs. 

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We developed a facile two-step hydrothermal procedure to prepare hybrid materials of LiV3O8 nanorods on graphene sheets. The special structure endows them with the high-rate transportation of electrolyte ions and electrons throughout the electrode matrix, resulting in remarkable electrochemical performance when they were used as cathodes in rechargeable lithium batteries. © 2013 The Royal Society of Chemistry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A tactful ionic-liquid (IL)-assisted approach to in situ synthesis of iron fluoride/graphene nanosheet (GNS) hybrid nanostructures is developed. To ensure uniform dispersion and tight anchoring of the iron fluoride on graphene, we employ an IL which serves not only as a green fluoride source for the crystallization of iron fluoride nanoparticles but also as a dispersant of GNSs. Owing to the electron transfer highways created between the nanoparticles and the GNSs, the iron fluoride/GNS hybrid cathodes exhibit a remarkable improvement in both capacity and rate performance (230 mAh g-1 at 0.1 C and 74 mAh g-1 at 40 C). The stable adhesion of iron fluoride nanoparticles on GNSs also introduces a significant improvement in long-term cyclic performance (115 mAh g-1 after 250 cycles even at 10 C). The superior electrochemical performance of these iron fluoride/GNS hybrids as lithium ion battery cathodes is ascribed to the robust structure of the hybrid and the synergies between iron fluoride nanoparticles and graphene. © 2013 American Chemical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adequate silicon fertilization greatly boosts rice yield and mitigates biotic and abiotic stress, and improves grain quality through lowering the content of cadmium and inorganic arsenic. This review on silicon dynamics in rice considers recent advances in our understanding of the role of silicon in rice, and the challenges of maintaining adequate silicon fertility within rice paddy systems. Silicon is increasingly considered as an element required for optimal plant performance, particularly in rice. Plants can survive with very low silicon under laboratory/glasshouse conditions, but this is highly artificial and, thus, silicon can be considered as essential for proper plant function in its environment. Silicon is incorporated into structural components of rice cell walls were it increases cell and tissue rigidity in the plant. Structural silicon provides physical protection to plants against microbial infection and insect attack as well as reducing the quality of the tissue to the predating organisms. The abiotic benefits are due to silicon's effect on overall organ strength. This helps protect against lodging, drought stress, high temperature (through efficient maintenance of transpiration), and photosynthesis by protecting against high UV. Furthermore, silicon also protects the plant from saline stress and against a range of toxic metal stresses (arsenic, cadmium, chromium, copper, nickel and zinc). Added to this, silicon application decreases grain concentrations of various human carcinogens, in particular arsenic, antimony and cadmium. As rice is efficient at stripping bioavailable silicon from the soil, recycling of silicon rich rice straw biomass or addition of inorganic silicon fertilizer, primarily obtained from iron and steel slag, needs careful management. Silicon in the soil may be lost if the silicon-cycle, traditionally achieved via composting of rice straw and returning it to the land, is being broken. As composting of rice straw and incorporation of composted or non-composted straw back to land are resource intensive activities, these activities are declining due to population shifts from the countryside to cities. Processes that accelerate rice straw composting, therefore, need to be identified to aid more efficient use of this resource. In addition, rice genetics may help address declining available silicon in paddy soils: for example by selecting for characteristics during breeding that lead to an increased ability of roots to access recalcitrant silicon sources from soil and/or via selection for traits that aid the maintenance of a high silicon status in shoots. Recent advances in understanding the genetic regulation of silicon uptake and transport by rice plants will aid these goals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Research into the composition of cereal grains is motivated by increased interest in food quality. Here multi-element analysis is conducted on leaves and grain of the Bala x Azucena rice mapping population grown in the field. Quantitative trait loci (QTLs) for the concentration of 17 elements were detected, revealing 36 QTLs for leaves and 41 for grains. Epistasis was detected for most elements. There was very little correlation between leaf and grain element concentrations. For selenium, lead, phosphorus and magnesium QTLs were detected in the same location for both tissues. In general, there were no major QTL clusters, suggesting separate regulation of each element. QTLs for grain iron, zinc, molybdenum and selenium are potential targets for marker assisted selection to improve seed nutritional quality. An epistatic interaction for grain arsenic also looks promising to decrease the concentration of this carcinogenic element. © Springer Science+Business Media B.V. 2009.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Scots pine seedlings colonized by ectomycorrhizal (ECM) fungi from natural soil inoculum were exposed to a range of Cd or Zn concentrations to investigate the effects of metals on ECM fungi-Scots pine associations in a realistic soil environment. Experiments focused on the relationship between the sensitivity of ECM fungi and their host plants, the influence of metals on ECM community dynamics on Scots pine roots, and the effects of metal exposure on ECM colonization from soil-borne propagules. Ectomycorrhizal colonization was inhibited by Cd and Zn, with a decrease in the proportion of ECM-colonized root tips. Shoot and root biomass, total root length, and total root-tip density, however, were unaffected by Cd or Zn. A decrease in the diversity of ECM morphotypes also occurred, which could have a negative effect on tree vigor. Overall, colonization by ECM fungi was more sensitive than seedling growth to Cd and Zn, and this could have serious implications for successful tree establishment on metal-contaminated soils.