173 resultados para Middle aged women
Resumo:
To evaluate the dose-response relationship of lixisenatide (AVE0010), a glucagon-like peptide-1 (GLP-1) receptor agonist, in metformin-treated patients with Type 2 diabetes.
Resumo:
Green tea (Camellia sinensis) has shown to exert cardioprotective benefits in observational studies. The objective of this clinical trial was to assess the effects of green tea on features of metabolic syndrome and inflammation in obese subjects.
Resumo:
To determine the feasibility of educating adults about their risk of prediabetes/diabetes in a community pharmacy, to determine the common risk factors for prediabetes/diabetes in adults visiting a community pharmacy, and to assess any association between risk factors and age.
Resumo:
Clinical treatment goals of type 1 diabetes mellitus (T1DM) have changed since the Diabetes Control and Complications Trial (DCCT) demonstrated reduced long-term complications with intensive diabetes therapy. There have been few longitudinal studies to describe the clinical course of T1DM in the age of intensive therapy. Our objective was to describe the current-day clinical course of T1DM.
Resumo:
To determine if levels of coated-platelets, which are potentially pro-thrombotic, are increased in end-stage renal disease patients on haemodialysis, a condition associated with high cardiovascular disease risk.
Resumo:
Because endothelial cell dysfunction and inflammation are key contributors to the development of complications in type 1 diabetes, we studied risk factors related to endothelial dysfunction and inflammation (C-reactive protein and fibrinogen, soluble vascular cell adhesion molecule-1, intracellular adhesion molecule-1, and E-selectin, and fibrinolytic markers) in a subgroup of patients from the Diabetes Control and Complications Trial (DCCT)/Epidemiology of Diabetes Intervention and Complications (EDIC) study cohort.
Resumo:
Coated-platelet levels were quantified in 58 people with Type 1 diabetes, 90 with Type 2 diabetes, and 54 non-diabetic controls. In diabetes high coated-platelet levels were related to smoking and glucose control drugs, but not to glycaemia or other drugs. Prospective studies should evaluate coated-platelets and complications and drug effects.
Resumo:
Purpose: The pathogenesis of diabetic retinopathy (DR) is not fully understood. Clinical studies suggest that dyslipidemia is associated with the initiation and progression of DR. However, no direct evidence supports this theory.
Methods: Immunostaining of apolipoprotein B100 (ApoB100, a marker of low-density lipoprotein [LDL]), macrophages, and oxidized LDL was performed in retinal sections from four different groups of subjects: nondiabetic, type 2 diabetic without clinical retinopathy, diabetic with moderate nonproliferative diabetic retinopathy (NPDR), and diabetic with proliferative diabetic retinopathy (PDR). Apoptosis was characterized using the TUNEL assay. In addition, in cell culture studies using in vitro-modi?ed LDL, the induction of apoptosis by heavily oxidized-glycated LDL (HOG-LDL) in human retinal capillary
pericytes (HRCPs) was assessed.
Results: Intraretinal immuno?uorescence of ApoB100 increased with the severity of DR. Macrophages were prominent only in sections from diabetic patients with PDR. Merged images revealed that ApoB100 partially colocalized with macrophages. Intraretinal oxidized LDL was absent in nondiabetic subjects but present in all three diabetic groups, increasing with the severity of DR. TUNEL-positive cells were present in retinas from diabetic subjects but absent in those from nondiabetic subjects. In cell culture, HOG-LDL induced the activation of caspase, mitochondrial dysfunction, and apoptosis in
HRCPs.
Conclusions: These ?ndings suggest a potentially important role for extravasated, modi?ed LDL in promoting DR by promoting apoptotic pericyte loss.
Resumo:
To determine in Type 1 diabetes patients if levels of pigment epithelium-derived factor (PEDF), an anti-angiogenic, anti-inflammatory and antioxidant factor, are increased in individuals with complications and positively related to vascular and renal dysfunction, body mass index, glycated haemoglobin, lipids, inflammation and oxidative stress.
Resumo:
We determined whether oxidative damage in collagen is increased in (1) patients with diabetes; (2) patients with diabetic complications; and (3) subjects from the Diabetes Control and Complications Trial (DCCT)/Epidemiology of Diabetes Interventions and Complications (EDIC) study, with comparison of subjects from the former standard vs intensive treatment groups 4 years after DCCT completion.
Resumo:
To relate nuclear magnetic resonance lipoprotein subclass profiles (NMR-LSP) and other lipoprotein-related factors with carotid intima-media thickness (IMT) in Type 1 diabetes.
Resumo:
We investigated the associations of apolipoprotein C-III (apoCIII) protein and apoCIII gene variation with microvascular disease complications in Type 1 diabetes.
Resumo:
To relate the nuclear magnetic resonance (NMR)-determined lipoprotein profile, conventional lipid and apolipoprotein measures, and in vitro oxidizibility of LDL with gender and glycemia in type 1 diabetes.
Resumo:
Collagen molecules in articular cartilage have an exceptionally long lifetime, which makes them susceptible to the accumulation of advanced glycation end products (AGEs). In fact, in comparison to other collagen-rich tissues, articular cartilage contains relatively high amounts of the AGE pentosidine. To test the hypothesis that this higher AGE accumulation is primarily the result of the slow turnover of cartilage collagen, AGE levels in cartilage and skin collagen were compared with the degree of racemization of aspartic acid (% d-Asp, a measure of the residence time of a protein). AGE (N(epsilon)-(carboxymethyl)lysine, N(epsilon)-(carboxyethyl)lysine, and pentosidine) and % d-Asp concentrations increased linearly with age in both cartilage and skin collagen (p <0.0001). The rate of increase in AGEs was greater in cartilage collagen than in skin collagen (p <0.0001). % d-Asp was also higher in cartilage collagen than in skin collagen (p <0.0001), indicating that cartilage collagen has a longer residence time in the tissue, and thus a slower turnover, than skin collagen. In both types of collagen, AGE concentrations increased linearly with % d-Asp (p <0.0005). Interestingly, the slopes of the curves of AGEs versus % d-Asp, i.e. the rates of accumulation of AGEs corrected for turnover, were identical for cartilage and skin collagen. The present study thus provides the first experimental evidence that protein turnover is a major determinant in AGE accumulation in different collagen types. From the age-related increases in % d-Asp the half-life of cartilage collagen was calculated to be 117 years and that of skin collagen 15 years, thereby providing the first reasonable estimates of the half-lives of these collagens.
Resumo:
The glycoxidation products Nepsilon-(carboxymethyl)lysine and pentosidine increase in skin collagen with age and at an accelerated rate in diabetes. Their age-adjusted concentrations in skin collagen are correlated with the severity of diabetic complications. To determine the relative roles of increased glycation and/or oxidation in the accelerated formation of glycoxidation products in diabetes, we measured levels of amino acid oxidation products, distinct from glycoxidative modifications of amino acids, as independent indicators of oxidative stress and damage to collagen in aging and diabetes. We show that ortho-tyrosine and methionine sulfoxide are formed in concert with Nepsilon-(carboxymethyl)lysine and pentosidine during glycoxidation of collagen in vitro, and that they also increase with age in human skin collagen. The age-adjusted levels of these oxidized amino acids in collagen was the same in diabetic and nondiabetic subjects, arguing that diabetes per se does not cause an increase in oxidative stress or damage to extracellular matrix proteins. These results provide evidence for an age-dependent increase in oxidative damage to collagen and support previous conclusions that the increase in glycoxidation products in skin collagen in diabetes can be explained by the increase in glycemia alone, without invoking a generalized, diabetes-dependent increase in oxidative stress.