133 resultados para Microstructure-final


Relevância:

20.00% 20.00%

Publicador:

Resumo:

6061 O Al alloy foils were welded to form monolithic and SiC fibre-embedded samples using the ultrasonic consolidation (UC) process. Contact pressures of 135, 155 and 175 MPa were investigated at 20 kHz frequency, 50% of the oscillation amplitude, 34.5 mm s sonotrode velocity and 20 °C. Deformed microstructures were analysed using electron backscatter diffraction (EBSD). At all contact pressures deformation occurs by non-steady state dislocation glide. Dynamic recovery is active in the upper and lower foils. Friction at the welding interface, instantaneous internal temperatures (0.5-0.8 of the melting temperature, T), contact pressure and fast strain rates result in transient microstructures and grain size reduction by continuous dynamic recrystallization (CDRX) within the bonding zone. Bonding occurs by local grain boundary migration, which allows diffusion and atom interlocking across the contact between two clean surfaces. Textures weaken with increasing contact pressure due to increased strain hardening and different grain rotation rates. High contact pressures enhance dynamic recovery and CDRX. Deformation around the fibre is intense within 50 μm and extends to 450 μm from it. © 2009 Acta Materialia Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultrasonic welding process can be used for bonding metal foils which is the fundament of ultrasonic consolidation (UC). UC process can be used to embed reinforcement fibres such as SiC fibres within an aluminum matrix materials. In this research we are investigating the phenomena occurring in the microstructure of the parts during ultrasonic welding process to obtain better understanding about how and why the process works. High-resolution electron backscatter diffraction (EBSD) is used to study the effects of the vibration on the evolution of microstructure in AA3003. The inverse pole figures (IPF) and the correlated misorientation angle distribution of the mentioned samples are obtained. The characteristics of the crystallographic orientation, the grain structure and the grain boundary are analyzed to find the effect of ultrasonic vibration on the microstructure and microtexture of the bond. The ultrasonic vibration will lead to exceptional refinement of grains to a micron level along the bond area and affect the crystallographic orientation. Ultrasonic vibration results in a very weak texture. Plastic flow occurs in the grain after welding process and there is additional plastic flow around the fibre which leads to the fibre embedding. © 2009 Editorial Board of CHINA WELDING.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultrasonic metal welding can be used to join two metal foils. There are two different effects under ultrasonic welding. They are surface effect and volume effect. These two effects were validated under macro experiments. Then how to validate in micro test is seldom researched. EBSD method was used to research the microstructure evolution of AA6061 under ultrasonic welding. The image maps indicating all Euler angle and the correlated misorientation angle distribution of both original foil and welding sample were got by EBSD in order to understand how ultrasonic welding affect the grain orientation and microstructure. The test shows that after ultrasonic vibration, the grain size has little change. And ultrasonic vibration results in a very weak texture. FEM results also validate these conclusions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This programme of research aimed to understand the extent to which current UK medical graduates are prepared for practice. Commissioned by the General Medical Council, we conducted: (1) A Rapid Review of the literature between 2009 and 2013; (2) narrative interviews with a range of stakeholders; and (3) longitudinal audio-diaries with Foundation Year 1 doctors. The Rapid Review (RR) resulted in data from 81 manuscripts being extracted and mapped against a coding framework (including outcomes from Tomorrow's Doctors (2009) (TD09)). A narrative synthesis of the data was undertaken. Narrative interviews were conducted with 185 participants from 8 stakeholder groups: F1 trainees, newly registered trainee doctors, clinical educators, undergraduate and postgraduate deans and foundation programme directors, other healthcare professionals, employers, policy and government and patient and public representatives. Longitudinal audio-diaries were recorded by 26 F1 trainees over 4 months. The data were analysed thematically and mapped against TD09. Together these data shed light onto how preparedness for practice is conceptualised, measured, how prepared UK medical graduates are for practice, the effectiveness of transition interventions and the currently debated issue of bringing full registration forward to align with medical students’ graduation. Preparedness for practice was conceptualised as both a long- and short-term venture that included personal readiness as well as knowledge, skills and attitudes. It has mainly been researched using self-report measures of generalised incidents that have been shown to be problematic. In terms of transition interventions: assistantships were found to be valuable and efficacious for proactive students as team members, shadowing is effective when undertaken close to employment/setting of F1 post and induction is generally effective but of inconsistent quality. The August transition was highlighted in our interview and audio-diary data where F1s felt unprepared, particularly for the step-change in responsibility, workload, degree of multitasking and understanding where to go for help. Evidence of preparedness for specific tasks, skills and knowledge was contradictory: trainees are well prepared for some practical procedures but not others, reasonably well prepared for history taking and full physical examinations, but mostly unprepared for adopting an holistic understanding of the patient, involving patients in their care, safe and legal prescribing, diagnosing and managing complex clinical conditions and providing immediate care in medical emergencies. Evidence for preparedness for interactional and interpersonal aspects of practice was inconsistent with some studies in the RR suggesting graduates were prepared for team working and communicating with colleagues and patients, but other studies contradicting this. Interview and audio-diary data highlights concerns around F1s preparedness for communicating with angry or upset patients and relatives, breaking bad news, communicating with the wider team (including interprofessionally) and handover communication. There was some evidence in the RR to suggest that graduates were unprepared for dealing with error and safety incidents and lack an understanding of how the clinical environment works. Interview and audio-diary data backs this up, adding that F1s are also unprepared for understanding financial aspects of healthcare. In terms of being personally prepared, RR, interview and audio diary evidence is mixed around graduates’ preparedness for identifying their own limitations, but all data points to graduates’ difficulties in the domain of time management. In terms of personal and situational demographic factors, the RR found that gender did not typically predict perceptions of preparedness, but graduates from more recent cohorts, graduate entry students, graduates from problem based learning courses, UK educated graduates and graduates with an integrated degree reported feeling better prepared. The longitudinal audio-diaries provided insights into the preparedness journey for F1s. There seems to be a general development in the direction of trainees feeling more confident and competent as they gain more experience. However, these developments were not necessarily linear as challenging circumstances (e.g. new specialty, new colleagues, lack of staffing) sometimes made them feel unprepared for situations where they had previously indicated preparedness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, ceria-yttria co-stabilized zirconia (CYSZ) free-standing coatings, deposited by air plasma spraying (APS), were isothermally annealed at 1315 °C in order to explore the effect of sintering on the microstructure and the mechanical properties (i.e., hardness and Young's modulus). To this aim, coating microstructure, before and after heat treatment, was analyzed using scanning electron microscopy, and image analysis was carried out in order to estimate porosity fraction. Moreover, Vickers microindentation and depth-sensing nanoindentation tests were performed in order to study the evolution of hardness and Young's modulus as a function of annealing time. The results showed that thermal aging of CYSZ coatings leads to noticeable microstructural modifications. Indeed, the healing of finer pores, interlamellar, and intralamellar microcracks was observed. In particular, the porosity fraction decreased from ~10 to ~5% after 50 h at 1315 °C. However, the X-ray diffraction analyses revealed that high phase stability was achieved, as no phase decomposition occurred after thermal aging. In turn, both the hardness and Young's modulus increased, in particular, the increase in stiffness (with respect to "as produced" samples) was equal to ~25%, whereas the hardness increased to up to ~60%. © 2010 Springer Science+Business Media, LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermal barrier coatings (TBCs) are widely adopted to protect mechanical components in gas turbine engines operating at high temperature. Basically, the surface temperature of these components must be low enough to retain material properties within acceptable bounds and to extend component life. From this standpoint, air plasma-sprayed (APS) ceria and yttria co-stabilized zirconia (CYSZ) is particularly promising because it provides enhanced thermal insulation capabilities and resistance to hot corrosion. However, essential mechanical properties, such as hardness and Young's modulus, have been less thoroughly investigated. Knowledge of Young's modulus is of concern because it has a significant effect on strain tolerance and stress level and, hence, on durability. The focus of the present study was to determine the mechanical properties of APS CYSZ coatings. In particular, X-ray diffraction (XRD) is adopted for phase analysis of powders and as-sprayed coatings. In addition, scanning electron microscopy (SEM) and image analysis (IA) are employed to explore coating microstructure and porosity. Finally, the Young's modulus of the coating is determined using nanoindentation and a resonant method. The results obtained are then discussed and a cross-check on their consistency is carried out by resorting to a micromechanical model. © 2010 Blackwell Publishing Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microstructure, tensile properties and fractography have been examined in the oil-quenched samples of a low-alloy ultrahigh strength 4340 steel. Intergranular fracture was revealed to locate at the fracture origin. However, neither the quenched Charpy V-notched impact samples nor the tempered tensile samples showed such intergranular fracture behavior. The effects of loading rate and precipitation are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the process of room-temperature low cycle fatigue, the China Low Activation Martensitic steel exhibits at the beginning cyclic hardening and then continuous cyclic softening. The grain size decreased and the martensitic lath transformed to cells/subgrains after the tests. The subgrains increase in size with increasing strain amplitude.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A constitutive equation was established to describe the deformation behavior of a nitride-strengthened (NS) steel through isothermal compression simulation test. All the parameters in the constitutive equation including the constant and the activation energy were precisely calculated for the NS steel. The result also showed that from the stress-strain curves, there existed two different linear relationships between critical stress and critical strain in the NS steel due to the augmentation of auxiliary softening effect of the dynamic strain-induced transformation. In the calculation of processing maps, with the change of Zener-Hollomon value, three domains of different levels of workability were found, namely excellent workability region with equiaxed-grain microstructure, good workability region with “stripe” microstructure, and the poor workability region with martensitic-ferritic blend microstructure. With the increase of strain, the poor workability region first expanded, then shrank to barely existing, but appeared again at the strain of 0.6.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Fe-8.46%Mn-0.24%Nb-0.038%C (wt.%) manganese steel was investigated. The steel has a 100% bcc structure after heat treatment at 850°C for 1.5 h, water quenching or air cooling. Martensite interlocked microstructure consisting of fine martensite plates/needles with different spatial orientations was found. Austenite forms, in small amounts, after a 600°C reheating treatment. Scanning electron microscopy images and energy dispersive spectrometry of the fracture surfaces revealed both ductile and brittle types of failure and precipitates. Deep quenching after the heat treatments does not change the phase composition or the hardness. NbC is formed in the steel, in high number densities. It plays a role in the impact fracture process, by acting as void nucleation sites, facilitating ductile fracture with dimples appearing on the fracture surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An yttrium aluminum (YAl2) intermetallic compound ingot was prepared in an induction furnace under vacuum. The microstructure of YAl2 ingot was characterized by optical microscopy, scanning electron microscopy, and X-ray diffraction. The load bearing response of YAl2 intermetallic was investigated and compared with SiC ceramic by indentation combined with optical microscopy and scanning electron microscopy. Additionally, the tensile properties of the Mg–Li matrix composites reinforced with ultrafine YAl2 particles fabricated by planet ball milling were tested. The results show that the intermetallic compound ingot in this experiment is composed of a main face-centered-cubic structure YAl2 phase, a small amount of YAl phase, and minor Y and Al-rich phases. YAl2 intermetallic compound has excellent stability and shows better capability in crack resistance than SiC ceramic. The YAl2 intermetallic compound has better deformation compatibility with the Mg–14Li–3Al matrix than SiC reinforcement with the matrix, which leads to the superior resistance to crack for YAl2p/Mg–14Li–3Al composite compared to SiCp/Mg–14Li–3Al composite.