164 resultados para Johnson, Fred G., 1892-
Resumo:
The role of rhodopsin as a structural prototype for the study of the whole superfamily of G protein-coupled receptors (GPCRs) is reviewed in an historical perspective. Discovered at the end of the nineteenth century, fully sequenced since the early 1980s, and with direct three-dimensional information available since the 1990s, rhodopsin has served as a platform to gather indirect information on the structure of the other superfamily members. Recent breakthroughs have elicited the solution of the structures of additional receptors, namely the beta 1- and beta 2-adrenergic receptors and the A(2A) adenosine receptor, now providing an opportunity to gauge the accuracy of homology modeling and molecular docking techniques and to perfect the computational protocol. Notably, in coordination with the solution of the structure of the A(2A) adenosine receptor, the first "critical assessment of GPCR structural modeling and docking" has been organized, the results of which highlighted that the construction of accurate models, although challenging, is certainly achievable. The docking of the ligands and the scoring of the poses clearly emerged as the most difficult components. A further goal in the field is certainly to derive the structure of receptors in their signaling state, possibly in complex with agonists. These advances, coupled with the introduction of more sophisticated modeling algorithms and the increase in computer power, raise the expectation for a substantial boost of the robustness and accuracy of computer-aided drug discovery techniques in the coming years.
Resumo:
Signaling of G protein-coupled receptors (GPCRs) is regulated by different mechanisms. One of these involves regulators of G protein signaling (RGS), which are diverse and multifunctional proteins that bind to active G alpha subunits of G proteins and act as GTPase-activating proteins. Little is known about the molecular mechanisms that govern the selective use of RGS proteins in living cells. We first demonstrated that CCK2R-mediated inositol phosphate production, known to be G(q-)dependent, is more sensitive to RGS2 than to RGS4 and is insensitive to RGS8. Both basal and agonist-stimulated activities of the CCK2R are regulated by RGS2. By combining biochemical functional, and in silico structural approaches, we demonstrate that a direct and functional interaction occurs between RGS2 and agonist-stimulated cholecystokinin receptor-2 (CCK2R) and identified the precise residues involved: phosphorylated Ser434 and Thr439 located in the C-terminal tail of CCK2R and Lys62, Lys63, and Gln67, located in the N-terminal domain of RGS2. These findings confirm previous reports that RGS proteins can interact with GPCRs to modulate their signaling and provide a molecular basis for RGS2 recognition by the CCK2R.
Resumo:
Accurate in silico models for the quantitative prediction of the activity of G protein-coupled receptor (GPCR) ligands would greatly facilitate the process of drug discovery and development. Several methodologies have been developed based on the properties of the ligands, the direct study of the receptor-ligand interactions, or a combination of both approaches. Ligand-based three-dimensional quantitative structure-activity relationships (3D-QSAR) techniques, not requiring knowledge of the receptor structure, have been historically the first to be applied to the prediction of the activity of GPCR ligands. They are generally endowed with robustness and good ranking ability; however they are highly dependent on training sets. Structure-based techniques generally do not provide the level of accuracy necessary to yield meaningful rankings when applied to GPCR homology models. However, they are essentially independent from training sets and have a sufficient level of accuracy to allow an effective discrimination between binders and nonbinders, thus qualifying as viable lead discovery tools. The combination of ligand and structure-based methodologies in the form of receptor-based 3D-QSAR and ligand and structure-based consensus models results in robust and accurate quantitative predictions. The contribution of the structure-based component to these combined approaches is expected to become more substantial and effective in the future, as more sophisticated scoring functions are developed and more detailed structural information on GPCRs is gathered.
Resumo:
G protein-coupled receptors (GPCRs) represent a major focus in functional genomics programs and drug development research, but their important potential as drug targets contrasts with the still limited data available concerning their activation mechanism. Here, we investigated the activation mechanism of the cholecystokinin-2 receptor (CCK2R). The three-dimensional structure of inactive CCK2R was homology-modeled on the basis of crystal coordinates of inactive rhodopsin. Starting from the inactive CCK2R modeled structure, active CCK2R (namely cholecystokinin-occupied CCK2R) was modeled by means of steered molecular dynamics in a lipid bilayer and by using available data from other GPCRs, including rhodopsin. By comparing the modeled structures of the inactive and active CCK2R, we identified changes in the relative position of helices and networks of interacting residues, which were expected to stabilize either the active or inactive states of CCK2R. Using targeted molecular dynamics simulations capable of converting CCK2R from the inactive to the active state, we delineated structural changes at the atomic level. The activation mechanism involved significant movements of helices VI and V, a slight movement of helices IV and VII, and changes in the position of critical residues within or near the binding site. The mutation of key amino acids yielded inactive or constitutively active CCK2R mutants, supporting this proposed mechanism. Such progress in the refinement of the CCK2R binding site structure and in knowledge of CCK2R activation mechanisms will enable target-based optimization of nonpeptide ligands.
Resumo:
There is an increasing interest towards the mechanism by which regulators of G-protein signaling regulate signals of G-protein-coupled receptors. RGS2 is a regulator of Gq protein signaling (RGS), the N-terminal region of which is known to contain determinants for G protein-coupled receptor recognition, but its structure is still unknown. To understand the molecular basis for this recognition, the three-dimensional model of RGS2, including N-terminal region and RGS box, was modeled. For this, RGS4 box structure and data from circular dichroism study of RGS2 N-terminal region were used. Then, membrane-targeting activity of the RGS2 amphipathic helix contained in the N-terminal region was investigated. Furthermore, in cellulo study provided first evidence that an internal sequence within the N-terminal region of RGS2 is involved in RGS2 regulation of cholecystokinin receptor-2 signal. RGS2 modeled structure can now serve to study molecular recognition of RGS2 by signaling molecules. © 2006 Elsevier Inc. All rights reserved.
Resumo:
The SAR development is described for a series of N-acyl pyrrolidine inhibitors of the Hepatitis C virus RNA-dependent RNA polymerase, NS5B, from tractable Delta 21 enzyme inhibitors to an example with antiviral activity in a cellular assay (HCV replicon). (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
A new method for catalyst deposition on the inner walls of capillary microreactors is proposed which allows exact control of the coating thickness, pore size of the support, metal particle size, and metal loading. The wall-coated microreactors have been tested in a selective hydrogenation reaction. Activity and selectivity reach values close to those obtained with a homogeneous Pd catalyst. The catalyst activity was stable for a period of 1000 h time-on-stream.
Resumo:
Not all introduced (invasive) species in a region will spread from a single point of introduction. Long-distance dispersal or further introductions can obscure the pattern of spread, but the regional importance of such processes is difficult to gauge. These difficulties are further compounded when information on the multiple scale process of invasive species range expansion is reduced to one-dimensional estimates of spread (e. g. km yr(-1)). We therefore compared the results of two different metrics of range expansion: maximum linear rate of spread and accumulation of occupied grid squares (50 x 50 km) over time. An analysis of records for 54 species of introduced marine macrophytes in the Mediterranean and northeast Atlantic revealed cases where the invasion process was probably missed (e. g. Atlantic Bonnemaisonia hamifera) and suggested cases of secondary introductions or erratic jump dispersal (Dasysiphonia sp. and Womersleyella setacea). A majority of species analysed showed evidence for an accumulation of invaded sites without a clear invasion front. Estimates of spread rate are increasing for more recent introductions. The increase is greater than can be accounted for by temporally varying search effort and implies a historical increase in vector efficiency and/or a decreased resistance of native communities to invasion.
Resumo:
Beds of nonattached coralline algae (maerl or rhodoliths) are widespread and considered relatively species rich. This habitat is generally found in areas where there is chronic physical disturbance such that maerl thalli are frequently moved. Little is known, however, about how natural disturbance regimes affect the species associated with maerl. This study compared the richness, animal abundance, and algal biomass of maerl-associated species over a two-year period in a wave-disturbed bed and a sheltered maerl bed. Changes in associated species over time were assessed for departures from a neutral model in which the dissimilarity between samples reflects random sampling from a common species pool. Algal biomass and species richness at the wave-exposed site and on stabilized maerl at the sheltered site were reduced at times of higher wind speeds. The changes in species richness were not distinguishable from a neutral model, implying that algal species were added at random to the assemblage as the level of disturbance lessened. Results for animal species were more mixed. Although mobile species were less abundant during windy periods at the exposed site, both neutral and non-neutral patterns were evident in the assemblages. Artificial stabilization of maerl had inconsistent effects on the richness of animals but always resulted in more attached algal species. While the results show that the response of a community to disturbance can be neutral, the domain of neutral changes in communities may be relatively small. Alongside non-neutral responses to natural disturbance, artificial stabilization always resulted in an assemblage that was more distinct than would be expected under random sampling from a common pool. Community responses to stabilization treatments did not consistently follow the predictions of the dynamic equilibrium model, the intermediate disturbance model, or a facilitation model. These inconsistencies may reflect site-specific variation in both the disturbance regime and the adjacent habitats that provide source populations for many of the species found associated with maerl.