137 resultados para Input Device
Resumo:
Capillary-based systems for measuring the input impedance of musical wind instruments were first developed in the mid-20th century and remain in widespread use today. In this paper, the basic principles and assumptions underpinning the design of such systems are examined. Inexpensive modifications to a capillary-based impedance measurement set-up made possible due to advances in computing and data acquisition technology are discussed. The modified set-up is able to measure both impedance magnitude and impedance phase even though it only contains one microphone. In addition, a method of calibration is described that results in a significant improvement in accuracy when measuring high impedance objects on the modified capillary-based system. The method involves carrying out calibration measurements on two different objects whose impedances are well-known theoretically. The benefits of performing two calibration measurements (as opposed to the one calibration measurement that has been traditionally used) are demonstrated experimentally through input impedance measurements on two test objects and a Boosey and Hawkes oboe. © S. Hirzel Verlag · EAA.
Resumo:
A bit-level systolic array for computing matrix x vector products is described. The operation is carried out on bit parallel input data words and the basic circuit takes the form of a 1-bit slice. Several bit-slice components must be connected together to form the final result, and authors outline two different ways in which this can be done. The basic array also has considerable potential as a stand-alone device, and its use in computing the Walsh-Hadamard transform and discrete Fourier transform operations is briefly discussed.
Resumo:
Hydrogen is detected using a Pd/n-InP Schottky diode in which the elongated, very thin Pd electrode is of greater resistance than the underlying semiconductor substrate. Four-probe measurements of the device resistance, as a function of hydrogen concentration, are made by contacting only the Pd electrode, with a sensitivity of 1 ppm being achieved. On hydrogen exposure the device resistance drops from an initial high value, characteristic of the Pd electrode alone, to a lower value due to a hydrogen-induced lowering of the Schottky barrier that opens up the InP substrate as a parallel current carrying channel.
Resumo:
PURPOSE: To report a new technique to correct tube position in anterior chamber after glaucoma drainage device implantation.
PATIENT AND METHODS: A patient who underwent a glaucoma drainage device implantation was noted to have the tube touching the corneal endothelium. A 10/0 polypropylene suture with double-armed 3-inch long straight needle was placed transcamerally from limbus to limbus, in the superior part of the eye, passing the needle in front of the tube.
RESULTS: The position of the tube in the anterior chamber was corrected with optimal distance from corneal endothelium and iris surface. The position remained satisfactory after 20 months of follow-up.
CONCLUSIONS: The placement of a transcameral suture offers a safe, quick, and minimal invasive intervention for the correction of the position of a glaucoma drainage device tube in the anterior chamber.
Resumo:
Patients with spontaneous lens dislocation and glaucoma can be challenging to manage. We present a forty-six year old Caucasian lady who was referred with bilateral high intraocular pressure, and was subsequently diagnosed with glaucoma in association with lens dislocation and Marfan syndrome. Baerveldt glaucoma drainage device tubes were inserted in both eyes due to poor response to medical therapy. However, this was complicated by recurrent vitreous occlusion of both glaucoma drainage tubes requiring further multiple surgical interventions. There have not been any further recurrences of vitreous incarceration or posterior segment complications since, but the patient remains under close follow-up. © 2010 Ang et al; licensee BioMed Central Ltd.
Resumo:
The susceptibility of WiFi networks to Rogue Access Point attacks derives from the lack of identity for 802.11 devices. The most common means of detecting these attacks in current research is through tracking the credentials or the location of unauthorised and possibly malicious APs. In this paper, the authors outline a method of distinguishing WiFi Access Points using 802.11 MAC layer management frame traffic profiles. This system does not require location estimation or credential tracking techniques as used in current research techniques, which are known to be inaccurate. These characteristic management traffic profiles are shown to be unique for each device, tantamount to a MAC identity. The application of this technique to solving Rogue AP attacks under the constraints of an open access, public WiFi environment is discussed with the conclusion that the identity is practically very difficult to forge
Resumo:
Two short site-specific pieces performed with others at the Royal Ulster Agricultural Show for Kabosh Theatre Company, as part of their continuing effort to broaden theatre audiences. One, using the form of the Edwardian melodrama, tells of Marconi's efforts to create a device to communicate with the dead. The second tells the tale of the Christian Brother who invented the submarine, John Philip Holland.
Resumo:
The ability to measure acetabular cup orientation accurately during total hip arthroplasty represents a significant challenge. The aim of this research was to develop and evaluate a novel low cost mechanical device for measuring operative acetabular inclination. Cup implantation was simulated in two trials using the novel device: firstly involving surgeons and engineers orientating acetabular cups with sawbone pelves at a range of inclination angles (20°-55° in 5° increments); secondly in a simulated intra-operative scenario with surgeons. Target angles were compared with achieved angles and deviations from desired angles were recorded. In addition, all participants orientated cups under the same conditions using two other techniques: freehand and with a propriatory Mechanical Alignment Guide. In the first trial, the mean errors (deviations) using freehand technique, the mechanical alignment guide and the new device were 5.2° +/- 4.3° (range 0.1-22.0), 3.6° +/- 3.9° (range 0.1°-33.6°) and 0.5° +/- 0.4° (range 0.0-1.9) respectively. In the second trial, the mean error for freehand technique, mechanical alignment guide and the new device were 6.2° +/- 4.2° (range 0.2-18.2), 3.8° +/- 3.3° (range 0.0-19.1) and 0.6° +/- 0.5° (range 0.0-1.8) respectively. The new device has the potential to allow the surgeon to choose and record operative inclination accurately during total hip arthroplasty in the lateral decubitus position.
Resumo:
MOLECULES that perform logic operations are prerequisites for molecular information processing and computation. We and others have previously reported receptor molecules that can be considered to perform simple logic operations by coupling ionic bonding or more complex molecular-recognition processes with photonic (fluorescence) signals: in these systems, chemical binding (the 'input') results in a change in fluorescence intensity (the 'output') from the receptor. Here we describe a receptor (molecule (1) in Fig. 1) that operates as a logic device with two input channels: the fluorescence signal depends on whether the molecule binds hydrogen ions, sodium ions or both. The input/output characteristics of this molecular device correspond to those of an AND gate.
Resumo:
Earth pressure balanced (EPB) full face tunneling machines have experienced a remarkable increase in the number of applications throughout the world due to both mechanical developments and a more effective use of additives to condition the ground. Conditioning modifies the mechanical and hydraulic properties of a soil by making it suitable for the pressure control in the bulk chamber and extraction with the screw conveyor. The extraction system plays a fundamental role during the EPB operations particularly for a correct application of the face pressure. Despite the extensive use of the EPB technique, little knowledge exists concerning the understanding of the behavior of conditioned soil, particularly for noncohesive ground (sand and gravel). This paper presents and describes a prototype laboratory device, which simulates the extraction of the ground from a pressurized tank with a screw conveyor. The results of a preliminary test program carried out on a medium sized sand show that the prototype device is efficient in verifying the effects of foam for an optimal use in EPB conditioning. © 2007 ASCE.
Resumo:
We report a simple and facile methodology for constructing Pt (6.3 mm x 50 mu m) and Cu (6.3 mm x 30 mu m) annular microband electrodes for use in room temperature ionic liquids (RTILs) and propose their use for amperometric gas sensing. The suitability of microband electrodes for use in electrochemical analysis was examined in experiments on two systems. The first system studied to validate the electrochemical responses of the annular microband electrode was decamethylferrocene (DmFc), as a stable internal reference probe commonly used in ionic liquids, in [Pmim][NTf2], where the diffusion coefficients of DmFc and DmFc(+) and the standard electron rate constant for the DmFc/DmFc(+) couple were determined through fitting chronoamperometric and cyclic voltammetric responses with relevant simulations. These values are independently compared with those collected from a commercially available Pt microdisc electrode with excellent agreement. The second system focuses on O-2 reduction in [Pmim][NTf2], which is used as a model for gas sensing. The diffusion coefficients of O-2 and O-2(-) and the electron transfer rate constant were again obtained using chronoamperometry and cyclic voltammetry, along with simulations. Results determined from the microbands are again consistent to those evaluated from the Pt microdisc electrode when compared these results from home-made microband and commercially available microdisc electrodes. These observations indicate that the fabricated annular microband electrodes are suitable for quantitative measurements. Further the successful use of the Cu electrodes in the O-2 system suggests a cheap disposable sensor for gas detection. (C) 2013 Elsevier B.V. All rights reserved.