102 resultados para IMPLANT-SUPPORTED OVERDENTURES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability to directly utilize hydrocarbons and other renewable liquid fuels is one of the most important issues affecting the large scale deployment of solid oxide fuel cells (SOFCs). Herein we designed La0.2Sr0.7TiO3-Ni/YSZ functional gradient anode (FGA) supported SOFCs, prepared with a co-tape casting method and sintered using the field assisted sintering technique (FAST). Through SEM observations, it was confirmed that the FGA structure was achieved and well maintained after the FAST process. Distortion and delamination which usually results after conventional sintering was successfully avoided. The La0.2Sr0.7TiO3-Ni/YSZ FGA supported SOFCs showed a maximum power density of 600mWcm-2 at 750°C, and was stable for 70h in CH4. No carbon deposition was detected using Raman spectroscopy. These results confirm the potential coke resistance of La0.2Sr0.7TiO3-Ni/YSZ FGA supported SOFCs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of wireless electrochemical promotion of catalysis (EPOC) of a Pt catalyst supported on a mixed ionic electronic conducting hollow fibre membranes is investigated. This reactor configuration offers high surface areas per unit volume and is ideally suited for scaled-up applications. The MIEC membrane used is the La 0.6Sr 0.4Co 0.2Fe 0.8O 3 perovskite (LSCF) with a Pt catalyst film deposited on the outer surface of the LSCF membrane. Experimental results showed that after initial catalyst deactivation (in the absence of an oxygen chemical potential difference across the membrane) the catalytic rate can be enhanced by using an oxygen sweep and wireless EPOC can be used for the in situ regeneration of a deactivated catalyst. © 2012 Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The recently discovered, high-temperature proton conductor, La0.99Sr0.01NbO4-δ, was used as a support for the electrochemical promotion of a platinum catalyst. Ethylene oxidation was used as a probe reaction in the temperature range 350-450 °C. Moderate non-Faradaic rate modification, attributable to a protonic promoting species, occurred under negative polarisation; some permanent promotion was also observed. In oxidative atmospheres, both the pO2 of the reaction mixture and the temperature influenced the type and magnitude of the observed rate modification. Rate-enhancement values of up to ρ = 1.4 and Faradaic-efficiency values approaching Λ = -100 were obtained. Promotion was observed under positive polarisation and relatively dry, oxygen-rich atmospheres suggesting that some oxygen ion conductivity may occur under these conditions. Impedance spectroscopy performed in atmospheres of 4 kPa O2/N2 and of 5 kPa H2/N2 under dry and slightly humidified (0.3 kPa H2O) conditions indicated that the electrical resistivity is heavily dominated by the grain-boundary response in the temperature range of the EPOC studies; much lower grain-boundary impedances in the wetter conditions are likely to be attributable to proton transport. © 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel configuration for the in situ control of the catalytic activity of a polycrystalline Pt catalyst supported on a mixed ionic electronic conducting (MIEC) substrate is investigated. The modification of the catalytic activity is achieved by inducing the reverse spillover of oxygen promoting species from the support onto the catalyst surface, thus modifying the chemisorptive bond energy of the gas phase adsorbed reactants. This phenomenon is known as Electrochemical Promotion of Catalysis (EPOC). In this work we investigate the use of a wireless system that takes advantage of the mixed ionic electronic conductivity of the catalyst support (internally short-circuiting the system) in a dual chamber reactor. In this wireless configuration, the reaction takes place in one chamber of the membrane reactor while introduction of the promoting species is achieved by the use of an appropriate sweep gas (and therefore control of the oxygen chemical potential difference across the membrane) on the other chamber. Experimental results have shown that the catalytic rate can be enhanced by using an oxygen sweep, while a hydrogen sweep can reverse the changes. Total rate enhancement ratios of up to 3.5 were measured. © 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electrochemical promotion of a platinum catalyst for ethylene oxidation on a dual chamber membrane reactor was studied. The catalyst was supported on a La0.6Sr0.4Co0.2Fe0.803 membrane. Due the supporting membrane's electronic conductivity it is possible to promote the reaction by controlling the oxygen chemical potential difference across the membrane. Upon establishment of an oxygen potential difference across the membrane, oxygen species can migrate and spillover onto the catalyst surface, modifying the catalytic activity. Initial experiments showed an overall promotion of approximately one order of magnitude of the reaction rate of ethylene, under an oxygen atmosphere on the sweep side of the membrane reactor, as compared with the rate under an inert sweep gas. The reaction rate can keep its promoted state even after the flow of oxygen on the sweep side was interrupted. This behavior caused further promotion with every experiment cycle. The causes of permanent promotion and on demonstrating controllable promotion of the catalytic activity are presented. This is an abstract of a paper presented at the AIChE Annual Meeting (San Francisco, CA 11/12-17/2006).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has been found that the catalytic activity and selectivity of a metal film deposited on a solid electrolyte could be enhanced dramatically and in a reversible way by applying an electrical current or potential between the metal catalyst and the counter electrode (also deposited on the electrolyte). This phenomenon is know as NEMCA [S. Bebelis, C.G. Vayenas, Journal of Catalysis, 118 (1989) 125-146.] or electrochemical promotion (EP) [J. Prichard, Nature, 343 (1990) 592.] of catalysis. Yttria-doped barium zirconate, BaZr0.9Y0.1O3 - α (BZY), a known proton conductor, has been used in this study. It has been reported that proton conducting perovskites can, under the appropriate conditions, act also as oxide ion conductors. In mixed conducting systems the mechanism of conduction depends upon the gas atmosphere that to which the material is exposed. Therefore, the use of a mixed ionic (oxide ion and proton) conducting membrane as a support for a platinum catalyst may facilitate the tuning of the promotional behaviour of the catalyst by allowing the control of the conduction mechanism of the electrolyte. The conductivity of BZY under different atmospheres was measured and the presence of oxide ion conduction under the appropriate conditions was confirmed. Moreover, kinetic experiments on ethylene oxidation corroborated the findings from the conductivity measurements showing that the use of a mixed ionic conductor allows for the tuning of the reaction rate. © 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES: Evaluate current data sharing activities of UK publicly funded Clinical Trial Units (CTUs) and identify good practices and barriers.

STUDY DESIGN AND SETTING: Web-based survey of Directors of 45 UK Clinical Research Collaboration (UKCRC)-registered CTUs.

RESULTS: Twenty-three (51%) CTUs responded: Five (22%) of these had an established data sharing policy and eight (35%) specifically requested consent to use patient data beyond the scope of the original trial. Fifteen (65%) CTUs had received requests for data, and seven (30%) had made external requests for data in the previous 12 months. CTUs supported the need for increased data sharing activities although concerns were raised about patient identification, misuse of data, and financial burden. Custodianship of clinical trial data and requirements for a CTU to align its policy to their parent institutes were also raised. No CTUs supported the use of an open access model for data sharing.

CONCLUSION: There is support within the publicly funded UKCRC-registered CTUs for data sharing, but many perceived barriers remain. CTUs are currently using a variety of approaches and procedures for sharing data. This survey has informed further work, including development of guidance for publicly funded CTUs, to promote good practice and facilitate data sharing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Porous manganese oxide (OMS-2) and platinum supported on OMS-2 catalysts have been shown to facilitate the hydrogenation of the nitro group on chloronitrobenzene to give chloroaniline with no dehalogenation. Complete conversion was obtained within 2 h at 25 [degree]C and, although the rate of reaction increased with increasing temperature up to 100 [degree]C, the selectivity to chloroaniline remained at 99.0%. Use of Pd/OMS-2 or Pt/Al2O3 resulted in significant dechlorination even at 25 [degree]C and 2 bar hydrogen pressure giving selectivity to chloroaniline of 34.5% and 77.8%, respectively, at complete conversion. This demonstrates the potential of using platinum group metal free catalysts for the selective hydrogenation of halogenated aromatics. Two pathways were observed for the analogous nitrobenzene hydrogenation depending on the catalyst used. The hydrogenation of nitrobenzene was found to follow a direct pathway to aniline and nitrosobenzene over Pd/OMS-2 in contrast to the OMS and Pt/OMS-2 catalysts which resulted in formation of nitrosobenzene, azoxybenzene and azobenzene/hydrazobenzene intermediates before complete conversion to aniline. These results indicate that for the Pt/OMS-2 the hydrogenation proceeds predominantly over the support with the metal acting to dissociate the hydrogen. In the case of the Pd/OMS-2 both the hydrogenation and the hydrogen adsorption occur on the metal sites.