103 resultados para Hyponormal operators
Resumo:
We show that if E is an atomic Banach lattice with an ordercontinuous norm, A, B ∈ Lr(E) and MA,B is the operator on Lr(E) defined by MA,B(T) = AT B then ||MA,B||r = ||A||r||B||r but that there is no real α > 0 such that ||MA,B || ≥ α ||A||r||B ||r.
Resumo:
Virtual topology operations have been utilized to generate an analysis topology definition suitable for downstream mesh generation. Detailed descriptions are provided for virtual topology merge and split operations for all topological entities, where virtual decompositions are robustly linked to the underlying geometry. Current virtual topology technology is extended to allow the virtual partitioning of volume cells. A valid description of the topology, including relative orientations, is maintained which enables downstream interrogations to be performed on the analysis topology description, such as determining if a specific meshing strategy can be applied to the virtual volume cells. As the virtual representation is a true non-manifold description of the sub-divided domain the interfaces between cells are recorded automatically. Therefore, the advantages of non-manifold modelling are exploited within the manifold modelling environment of a major commercial CAD system without any adaptation of the underlying CAD model. A hierarchical virtual structure is maintained where virtual entities are merged or partitioned. This has a major benefit over existing solutions as the virtual dependencies here are stored in an open and accessible manner, providing the analyst with the freedom to create, modify and edit the analysis topology in any preferred sequence.
Resumo:
This book provides a comprehensive tutorial on similarity operators. The authors systematically survey the set of similarity operators, primarily focusing on their semantics, while also touching upon mechanisms for processing them effectively.
The book starts off by providing introductory material on similarity search systems, highlighting the central role of similarity operators in such systems. This is followed by a systematic categorized overview of the variety of similarity operators that have been proposed in literature over the last two decades, including advanced operators such as RkNN, Reverse k-Ranks, Skyline k-Groups and K-N-Match. Since indexing is a core technology in the practical implementation of similarity operators, various indexing mechanisms are summarized. Finally, current research challenges are outlined, so as to enable interested readers to identify potential directions for future investigations.
In summary, this book offers a comprehensive overview of the field of similarity search operators, allowing readers to understand the area of similarity operators as it stands today, and in addition providing them with the background needed to understand recent novel approaches.
Resumo:
We present criteria for unital elementary operators (of small length) on unital semisimple Banach algebras to be spectral isometries. The surjective ones among them turn out to be algebra automorphisms.
Resumo:
We discuss some necessary and some sufficient conditions for an elementary operator x↦∑ni=1aixbi on a Banach algebra A to be spectrally bounded. In the case of length three, we obtain a complete characterisation when A acts irreducibly on a Banach space of dimension greater than three.
Resumo:
Let A be a unital dense algebra of linear mappings on a complex vector space X. Let φ = Σn i=1 Mai,bi be a locally quasi-nilpotent elementary operator of length n on A. We show that, if {a1, . . . , an} is locally linearly independent, then the local dimension of V (φ) = span{biaj : 1 ≤ i, j ≤ n} is at most n(n−1) 2 . If ldim V (φ) = n(n−1) 2 , then there exists a representation of φ as φ = Σn i=1 Mui,vi with viuj = 0 for i ≥ j. Moreover, we give a complete characterization of locally quasinilpotent elementary operators of length 3.
Resumo:
Properties of elementary operators, that is, finite sums of two-sided multiplications on a Banach algebra, have been studied under a vast variety of aspects by numerous authors. In this paper we review recent advances in a new direction that seems not to have been explored before: the question when an elementary operator is spectrally bounded or spectrally isometric. As with other investigations, a number of subtleties occur which show that elementary operators are still not elementary to handle.
Resumo:
We numerically analyse the behavior of the full distribution of collective observables in quantum spin chains. While most of previous studies of quantum critical phenomena are limited to the first moments, here we demonstrate how quantum fluctuations at criticality lead to highly non-Gaussian distributions. Interestingly, we show that the distributions for different system sizes collapse on thesame curve after scaling for a wide range of transitions: first and second order quantum transitions and transitions of the Berezinskii–Kosterlitz–Thouless type. We propose and analyse the feasibility of an experimental reconstruction of the distribution using light–matter interfaces for atoms in optical lattices or in optical resonators.
Resumo:
We prove that a semigroup generated by finitely many truncated convolution operators on $L_p[0, 1]$ with 1 ≤ p < ∞ is non-supercyclic. On the other hand, there is a truncated convolution operator, which possesses irregular vectors.
Resumo:
Recently, Bès, Martin, and Sanders [11] provided examples of disjoint hypercyclic operators which fail to satisfy the Disjoint Hypercyclicity Criterion. However, their operators also fail to be disjoint weakly mixing. We show that every separable, infinite dimensional Banach space admits operators T1,T2,…,TN with N⩾2 which are disjoint weakly mixing, and still fail to satisfy the Disjoint Hypercyclicity Criterion, answering a question posed in [11]. Moreover, we provide examples of disjoint hypercyclic operators T1, T2 whose corresponding set of disjoint hypercyclic vectors is nowhere dense, answering another question posed in [11]. In fact, we explicitly describe their set of disjoint hypercyclic vectors. Those same disjoint hypercyclic operators fail to be disjoint topologically transitive. Lastly, we create examples of two families of d-hypercyclic operators which fail to have any d-hypercyclic vectors in common.