112 resultados para Energy model
Resumo:
The applicability of ultra-short-term wind power prediction (USTWPP) models is reviewed. The USTWPP method proposed extracts featrues from historical data of wind power time series (WPTS), and classifies every short WPTS into one of several different subsets well defined by stationary patterns. All the WPTS that cannot match any one of the stationary patterns are sorted into the subset of nonstationary pattern. Every above WPTS subset needs a USTWPP model specially optimized for it offline. For on-line application, the pattern of the last short WPTS is recognized, then the corresponding prediction model is called for USTWPP. The validity of the proposed method is verified by simulations.
Resumo:
Aims: We aim to calculate the kinetic, magnetic, thermal, and total energy densities and the flux of energy in axisymmetric sausage modes. The resulting equations should contain as few parameters as possible to facilitate applicability for different observations.
Methods: The background equilibrium is a one-dimensional cylindrical flux tube model with a piecewise constant radial density profile. This enables us to use linearised magnetohydrodynamic equations to calculate the energy densities and the flux of energy for axisymmetric sausage modes.
Results: The equations used to calculate the energy densities and the flux of energy in axisymmetric sausage modes depend on the radius of the flux tube, the equilibrium sound and Alfvén speeds, the density of the plasma, the period and phase speed of the wave, and the radial or longitudinal components of the Lagrangian displacement at the flux tube boundary. Approximate relations for limiting cases of propagating slow and fast sausage modes are also obtained. We also obtained the dispersive first-order correction term to the phase speed for both the fundamental slow body mode under coronal conditions and the slow surface mode under photospheric conditions.
Resumo:
Modern control methods like optimal control and model predictive control (MPC) provide a framework for simultaneous regulation of the tracking performance and limiting the control energy, thus have been widely deployed in industrial applications. Yet, due to its simplicity and robustness, the conventional P (Proportional) and PI (Proportional–Integral) control are still the most common methods used in many engineering systems, such as electric power systems, automotive, and Heating, Ventilation and Air Conditioning (HVAC) for buildings, where energy efficiency and energy saving are the critical issues to be addressed. Yet, little has been done so far to explore the effect of its parameter tuning on both the system performance and control energy consumption, and how these two objectives are correlated within the P and PI control framework. In this paper, the P and PI controllers are designed with a simultaneous consideration of these two aspects. Two case studies are investigated in detail, including the control of Voltage Source Converters (VSCs) for transmitting offshore wind power to onshore AC grid through High Voltage DC links, and the control of HVAC systems. Results reveal that there exists a better trade-off between the tracking performance and the control energy through a proper choice of the P and PI controller parameters.
Resumo:
Mathematical models are useful tools for simulation, evaluation, optimal operation and control of solar cells and proton exchange membrane fuel cells (PEMFCs). To identify the model parameters of these two type of cells efficiently, a biogeography-based optimization algorithm with mutation strategies (BBO-M) is proposed. The BBO-M uses the structure of biogeography-based optimization algorithm (BBO), and both the mutation motivated from the differential evolution (DE) algorithm and the chaos theory are incorporated into the BBO structure for improving the global searching capability of the algorithm. Numerical experiments have been conducted on ten benchmark functions with 50 dimensions, and the results show that BBO-M can produce solutions of high quality and has fast convergence rate. Then, the proposed BBO-M is applied to the model parameter estimation of the two type of cells. The experimental results clearly demonstrate the power of the proposed BBO-M in estimating model parameters of both solar and fuel cells.
Resumo:
With the integration of combined heat and power (CHP) units, air-conditioners and gas boilers, power, gas, and heat systems are becoming tightly linked to each other in the integrated community energy system (ICES). Interactions among the three systems are not well captured by traditional methods. To address this issue, a hybrid power-gas-heat flow calculation method was developed in this paper. In the proposed method, an energy hub model was presented to describe interactions among the three systems incorporating various CHP operating modes. In addition, three operating modes were proposed for the ICES including fully decoupled, partially coupled, and fully coupled. Numerical results indicated that the proposed algorithm can be used in the steady-state analysis of the ICES and reflect interactions among various energy systems.
Resumo:
With the increasing utilization of combined heat and power plants (CHP), electrical, gas, and thermal systems are becoming tightly integrated in the urban energy system (UES). However, the three systems are usually planned and operated separately, ignoring their interactions and coordination. To address this issue, the coupling point of different systems in the UES is described by the energy hub model. With this model, an integrated load curtailment method is proposed for the UES. Then a Monte Carlo simulation based approach is developed to assess the reliability of coordinated energy supply systems. Based on this approach, a reliability-optimal energy hub planning method is proposed to accommodate higher renewable energy penetration. Numerical studies indicate that the proposed approach is able to quantify the UES reliability with different structures. Also, optimal energy hub planning scheme can be determined to ensure the reliability of the UES with high renewable penetration.
Resumo:
The use of geothermal energy as a source for electricity and district heating has increased over recent decades. Dissolved As can be an important constituent of the geothermal fluids brought to the Earth's surface. Here the field application of laboratory measured adsorption coefficients of aqueous As species on basaltic glass surfaces is discussed. The mobility of As species in the basaltic aquifer in the Nesjavellir geothermal system, Iceland was modelled by the one-dimensional (1D) reactive transport model PHREEQC ver. 2, constrained by a long time series of field measurements with the chemical composition of geothermal effluent fluids, pH, Eh and, occasionally, Fe- and As-dissolved species measurements. Di-, tri- and tetrathioarsenic species (As(OH)S22-, AsS3H2-, AsS33- and As(SH)4-) were the dominant form of dissolved As in geothermal waters exiting the power plant (2.556μM total As) but converted to some extent to arsenite (H3AsO3) and arsenate HAsO42- oxyanions coinciding with rapid oxidation of S2- to S2O32- and finally to SO42- during surface runoff before feeding into a basaltic lava field with a total As concentration of 0.882μM following dilution with other surface waters. A continuous 25-a data set monitoring groundwater chemistry along a cross section of warm springs on the Lake Thingvallavatn shoreline allowed calibration of the 1D model. Furthermore, a series of ground water wells located in the basaltic lava field, provided access along the line of flow of the geothermal effluent waters towards the lake. The conservative ion Cl- moved through the basaltic lava field (4100m) in less than10a but As was retarded considerably due to surface reactions and has entered a groundwater well 850m down the flow path as arsenate in accordance to the prediction of the 1D model. The 1D model predicted a complete breakthrough of arsenate in the year 2100. In a reduced system arsenite should be retained for about 1ka. © 2011 Elsevier Ltd.
Resumo:
The advantages of high energy efficiency and economic benefit promote the wide application of combined heat and power system (CHP) based microgrid. Firstly, a mathematical model of the CHP based microgrid is developed. Then, a cost function for the coordination of heat and electric load is proposed. Finally, an optimal dispatch model is developed to achieve the economical and coordinated operation of the CHP based microgrid system. Simulation results verify effectiveness of the proposed dispatch model, which is a powerful tool for the energy management of CHP based microgrid with renewable energy resources.
Resumo:
Among various technologies to tackle the twin challenges of sustainable energy supply and climate change, energy saving through advanced control plays a crucial role in decarbonizing the whole energy system. Modern control technologies, such as optimal control and model predictive control do provide a framework to simultaneously regulate the system performance and limit control energy. However, few have been done so far to exploit the full potential of controller design in reducing the energy consumption while maintaining desirable system performance. This paper investigates the correlations between control energy consumption and system performance using two popular control approaches widely used in the industry, namely the PI control and subspace model predictive control. Our investigation shows that the controller design is a delicate synthesis procedure in achieving better trade-o between system performance and energy saving, and proper choice of values for the control parameters may potentially save a significant amount of energy
Resumo:
We present a simple model for a component of the radiolytic production of any chemical species due to electron emission from irradiated nanoparticles (NPs) in a liquid environment, provided the expression for the G value for product formation is known and is reasonably well characterized by a linear dependence on beam energy. This model takes nanoparticle size, composition, density and a number of other readily available parameters (such as X-ray and electron attenuation data) as inputs and therefore allows for the ready determination of this contribution. Several approximations are used, thus this model provides an upper limit to the yield of chemical species due to electron emission, rather than a distinct value, and this upper limit is compared with experimental results. After the general model is developed we provide details of its application to the generation of HO(•) through irradiation of gold nanoparticles (AuNPs), a potentially important process in nanoparticle-based enhancement of radiotherapy. This model has been constructed with the intention of making it accessible to other researchers who wish to estimate chemical yields through this process, and is shown to be applicable to NPs of single elements and mixtures. The model can be applied without the need to develop additional skills (such as using a Monte Carlo toolkit), providing a fast and straightforward method of estimating chemical yields. A simple framework for determining the HO(•) yield for different NP sizes at constant NP concentration and initial photon energy is also presented.
Resumo:
Tanpura string vibrations have been investigated previously using numerical models based on energy conserving schemes derived from a Hamiltonian description in one-dimensional form. Such time-domain models have the property that, for the lossless case, the numerical Hamiltonian (representing total energy of the system) can be proven to be constant from one time step
to the next, irrespective of any of the system parameters; in practice the Hamiltonian can be shown to be conserved within machine precision. Models of this kind can reproduce a jvari effect, which results from the bridge-string interaction. However the one-dimensional formulation has recently been shown to fail to replicate the jvaris strong dependence on the thread placement. As a first step towards simulations which accurately emulate this sensitivity to the thread placement, a twodimensional model is proposed, incorporating coupling of controllable level between the two string polarisations at the string termination opposite from the barrier. In addition, a friction force acting when the string slides across the bridge in horizontal direction is introduced, thus effecting a further damping mechanism. In this preliminary study, the string is terminated at the position of the thread. As in the one-dimensional model, an implicit scheme has to be used to solve the system, employing Newton's method to calculate the updated positions and momentums of each string segment. The two-dimensional model is proven to be energy conserving when the loss parameters are set to zero, irrespective of the coupling constant. Both frequency-dependent and independent losses are then added to the string, so that the model can be compared to analogous instruments. The influence of coupling and the bridge friction are investigated.
Secure D2D Communication in Large-Scale Cognitive Cellular Networks: A Wireless Power Transfer Model
Resumo:
In this paper, we investigate secure device-to-device (D2D) communication in energy harvesting large-scale cognitive cellular networks. The energy constrained D2D transmitter harvests energy from multiantenna equipped power beacons (PBs), and communicates with the corresponding receiver using the spectrum of the primary base stations (BSs). We introduce a power transfer model and an information signal model to enable wireless energy harvesting and secure information transmission. In the power transfer model, three wireless power transfer (WPT) policies are proposed: 1) co-operative power beacons (CPB) power transfer, 2) best power beacon (BPB) power transfer, and 3) nearest power beacon (NPB) power transfer. To characterize the power transfer reliability of the proposed three policies, we derive new expressions for the exact power outage probability. Moreover, the analysis of the power outage probability is extended to the case when PBs are equipped with large antenna arrays. In the information signal model, we present a new comparative framework with two receiver selection schemes: 1) best receiver selection (BRS), where the receiver with the strongest channel is selected; and 2) nearest receiver selection (NRS), where the nearest receiver is selected. To assess the secrecy performance, we derive new analytical expressions for the secrecy outage probability and the secrecy throughput considering the two receiver selection schemes using the proposed WPT policies. We presented Monte carlo simulation results to corroborate our analysis and show: 1) secrecy performance improves with increasing densities of PBs and D2D receivers due to larger multiuser diversity gain; 2) CPB achieves better secrecy performance than BPB and NPB but consumes more power; and 3) BRS achieves better secrecy performance than NRS but demands more instantaneous feedback and overhead. A pivotal conclusion- is reached that with increasing number of antennas at PBs, NPB offers a comparable secrecy performance to that of BPB but with a lower complexity.
Resumo:
Models of ground source heat pump (GSHP) systems are used as an aid for the correct design and optimization of the system. For this purpose, it is necessary to develop models which correctly reproduce the dynamic thermal behavior of each component in a short-term basis. Since the borehole heat exchanger (BHE) is one of the main components, special attention should be paid to ensuring a good accuracy on the prediction of the short-term response of the boreholes. The BHE models found in literature which are suitable for short-term simulations usually present high computational costs. In this work, a novel TRNSYS type implementing a borehole-to-ground (B2G) model, developed for modeling the short-term dynamic performance of a BHE with low computational cost, is presented. The model has been validated against experimental data from a GSHP system located at Universitat Politècnica de València, Spain. Validation results show the ability of the model to reproduce the short-term behavior of the borehole, both for a step-test and under normal operating conditions.
Resumo:
A comprehensive continuum damage mechanics model [1] had been developed to capture the detailed
behaviour of a composite structure under a crushing load. This paper explores some of the difficulties
encountered in the implementation of this model and their mitigation. The use of reduced integration
element and a strain softening model both negatively affect the accuracy and stability of the
simulation. Damage localisation effects demanded an accurate measure of characteristic length. A
robust algorithm for determining the characteristic length was implemented. Testing showed that this
algorithm produced marked improvements over the use of the default characteristic length provided
by Abaqus. Zero-energy or hourglass modes, in reduced integration elements, led to reduced
resistance to bending. This was compounded by the strain softening model, which led to the formation
of elements with little resistance to deformation that could invert if left unchecked. It was shown,
through benchmark testing, that by deleting elements with excess distortions and controlling the mesh
using inbuilt distortion/hourglass controls, these issues can be alleviated. These techniques
contributed significantly to the viability and usability of the damage model.