439 resultados para Electronic portal imaging device


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conducting polypyrrole is a biological compatible polymer matrix wherein number of drugs and enzymes can be incorporated by way of doping. The polypyrrole, which is obtained as freestanding film by electrochemical polymerization, has gained tremendous recognition as sophisticated electronic measuring device in the field of sensors and drug delivery. In drug delivery the reversing of the potential 100% of the drug can be released and is highly efficient as a biosensor in presence of an enzyme. In this review we discuss the applications of conducting polypyrrole as biosensor for some biomolecules and drug delivery systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Explicit finite difference (FD) schemes can realise highly realistic physical models of musical instruments but are computationally complex. A design methodology is presented for the creation of FPGA-based micro-architectures for FD schemes which can be applied to a range of applications with varying computational requirements, excitation and output patterns and boundary conditions. It has been applied to membrane and plate-based sound producing models, resulting in faster than real-time performance on a Xilinx XC2VP50 device which is 10 to 35 times faster than general purpose and DSP processors. The models have developed in such a way to allow a wide range of interaction (by a musician) thereby leading to the possibility of creating a highly realistic digital musical instrument.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electrical transport and structural properties of platinum nanowires, deposited using the focussed ion beam method have been investigated. Energy dispersive X-ray spectroscopy reveals metal-rich grains (atomic composition 31% Pt and 50% Ga) in a largely non-metallic matrix of C, O and Si. Resistivity measurements (15-300 K) reveal a negative temperature coefficient with the room-temperature resistivity 80-300 times higher than that of bulk Pt. Temperature dependent current-voltage characteristics exhibit non-linear behaviour in the entire range investigated. The conductance spectra indicate increasing non-linearity with decreasing temperature, reaching 4% at 15 K. The observed electrical behaviour is explained in terms of a model for inter-grain tunnelling in disordered media, a mechanism that is consistent with the strongly disordered nature of the nanowires observed in the structure and composition analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The vibrational wavepacket revival of a basic quantum system is demonstrated experimentally. Using few-cycle laser pulse technology, pump and probe imaging of the vibrational motion of D+2 molecules is conducted, and together with a quantum-mechanical simulation of the excited wavepacket motion, the vibrational revival phenomenon has been characterised. The simulation shows good correlation with the temporal motion and structural features obtained from the data, relaying fundamental information on this diatomic system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a novel method for creating damage-free ferroelectric nanostructures with a focused ion beam milling machine. Using a standard e-beam photoresist followed by a dilute acid wash, nanostructures ranging in size from 1 mu m down to 250 nm were created in a 90 nm thick lead zirconate titanate ( PZT) wafer. Transmission electron microscopy and piezoresponse force microscopy ( PFM) confirmed that the surfaces of the nanostructures remained damage free during fabrication, and showed no gallium implantation, and that there was no degradation of ferroelectric properties. In fact DC strain loops, obtained using PFM, demonstrated that the nanostructures have a higher piezoresponse than unmilled films. As the samples did not have any top hard mask, the method presented is unique as it allows for imaging of the top surface to understand edge effects in well-defined nanostructures. In addition, as no post-mill annealing was necessary, it facilitates investigation of nanoscale domain mechanisms without process-induced artefacts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Periodic arrays of nanorings of morphotropic phase boundary lead zirconium titanate ( PZT) have been successfully fabricated using a novel self-assembly technique: close-packed monolayers of latex nanospheres were deposited onto Pt-coated silicon substrates, and then plasma cleaned to form ordered arrays of isolated nanospheres, not in contact with each other. Subsequent pulsed laser deposition of PZT, high angle argon ion etching and thermal annealing created the arrays of isolated nanorings, with diameters of similar to 100 nm and wall thicknesses of similar to 10 nm. Energy dispersive x-ray analysis confirms that the rings are compositionally morphotropic phase boundary PZT, and high resolution transmission electron microscopy imaging of lattice fringes demonstrates some periodicities consistent with perovskite rather than pyrochlore material. The dimensions of these nanorings, and the expected 'soft' behaviour of the ferroelectric material from which they are made, means that they offer the most likely opportunity to date for observing whether or not vortex arrangements of electrical dipoles, analogous to those seen in ferromagnetic nanostructures, actually exist.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sputtered silicon is investigated as a bonding layer for transfer of pre-processed silicon layers to various insulating substrates. Although the material appears suitable for low temperature processing, previous work has shown that gas trapped in the pores of the sputtered material is released at temperatures above 350 degrees C and further increases of temperature lead to destruction of any bonded interface. Pre-annealing at 1000 degrees C before bonding drives out gas and/or seals the surface, but for device applications where processing temperatures must be kept below about 300 degrees C, this technique cannot be used. In the current work, we have investigated the effect of excimer laser-annealing to heat the sputtered silicon surface to high temperature whilst minimising heating of the underlying substrate. Temperature profile simulations are presented and the results of RBS, TEM and AFM used to characterise the annealed layers. The results verify that gases are present in the sub-surface layers and suggest that while sealing of the surface is important for suppression of the out-diffusion of gases, immediate surface gas removal may also play a role. The laser-annealing technique appears to be an effective method of treating sputtered silicon, yielding a low roughness surface suitable for wafer bonding, thermal splitting and layer transfer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A hyperthermal hydrogen/deuterium atom beam source with a defined energy distribution has been employed to investigate the kinetically induced electron emission from noble metal surfaces. A monotonous increase in the emission yield was found for energies between 15 and 200 eV. This, along with an observed isotope effect, is described in terms of a model based on Boltzmann type electron energy distributions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel acousto-optic spectrometer (IfU Diagnostic Systems GmbH) for 2-dimensional (2D) optical emission spectroscopy with high spectral resolution has been developed. The spectrometer is based on acousto-optic tuneable filter technology with fast random wavelength access. Measurements for characterisation of the imaging quality, the spatial resolution, and the spectral resolution are presented. The applicability for 2D-space and phase resolved optical emission spectroscopy (2D-PROES) is shown. 2D-PROES has been applied to an inductively coupled plasma with radio frequency excitation at 13.56 MHz.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, a series of hydrogels was synthesized by free radical polymerization, namely poly(2-(hydroxyethyl) methacrylate) (pHEMA), poly(4-(hydroxybutyl)methacrylate) (pHBMA), poly(6-(hydroxyhexyl)methacrylate) (pHHMA), and copolymers composed of N-isopropylacrylamide (NIPAA), methacrylic acid (MA), NIPAA, and the above monomers. The surface, mechanical, and swelling properties (at 20 and 37 degrees C, pH 6) of the polymers were determined using dynamic contact angle analysis, tensile analysis, and thermogravimetry, respectively. The T-g and lower critical solution temperatures (LCST) were determined using modulated DSC and oscillatory rheometry, respectively. Drug loading of the hydrogels with chlorhexidine diacetate was performed by immersion in a drug solution at 20 degrees C (