126 resultados para Dopamine Antagonists


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: The interleukin 10 knockout mouse (IL10-KO) is a model of human inflammatory bowel disease (IBD) used to Study host microbial interactions and the action of potential therapeutics. Using Affymetrix data analysis, important signaling pathways and transcription factors relevant to gut inflammation and antiinflammatory probiotics were identified.

Methods: Affymetrix microarray analysis on both wildtype (WT) and IL10-KO mice orally administered with and without the probiotic VSL#3 was performed and the results validated by real-time polymerase chain reaction (PCR), immunocytochemistry, proteomics, and histopathology. Changes in metabolically active bacteria were assessed with denaturing gradient gel electrophoresis (DGGE).

Results: Inflammation in IL10-KO mice was characterized by differential regulation of inflammatory, nuclear receptor, lipid, and xenobiotic signaling pathways. Probiotic intervention resulted in downregulation of CXCL9 (fold change [FC] = -3.98, false discovery rate [FDR] = 0.019), CXCL10 (FC = -4.83, FDR = 0.0008), CCL5 (FC -3.47 FDR = 0.017), T-cell activation (Itgal [FC = -4.72, FDR = 0.00009], Itgae [FC = -2.54 FDR = 0.0044]) and the autophagy gene IRGM (FC = -1.94, FDR = 0.01), a recently identified susceptibility gene in human IBD. Consistent with a marked reduction in integrins, probiotic treatment decreased the number of CCL5+ CD3+ double-positive T Cells and upregulated galectin2, which triggers apoptosis of activated T cells. Importantly, genes associated with lipid and PPAR signaling (PPAR alpha [FC = 2.36, FDR = 0.043], PPARGC1 alpha [FC 2.58, FDR = 0.016], Nrld2 [FC = 3.11, FDR = 0.0067]) were also upregulated. Altered microbial diversity was noted in probiotic-treated mice.

Conclusions: Bioinformatics analysis revealed important immune response. phagocytic and inflammatory pathways dominated by elevation of T-helper cell 1 type (TH1) transcription factors in IL10-KO mice. Probiotic intervention resulted in a site-specific reduction of these pathways but importantly upregulated PPAR, xenobiotic, and lipid signaling genes. potential antagonists of NF-kappa B inflammatory pathways.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Selective polypharmacology, where a drug acts on multiple rather than single molecular targets involved in a disease, emerges to develop a structure-based system biology approach to design drugs selectively targeting a disease-active protein network. We focus on the bioaminergic receptors that belong to the group of integral membrane signalling proteins coupled to the G protein and represent targets for therapeutic agents against schizophrenia and depression. Among them, it has been shown that the serotonin (5-HT2A and 5-HT6), dopamine (D2 and D3) receptors induce a cognition-enhancing effect (group 1), while the histamine (H1) and serotonin (5-HT2C) receptors lead to metabolic side effects and the 5-HT2B serotonin receptor causes pulmonary hypertension (group 2). Thus, the problem arises to develop an approach that allows identifying drugs targeting only the disease-active receptors, i.e. group 1. The recent release of several crystal structures of the bioaminergic receptors, involving the D3 and H1 receptors provides the possibility to model the structures of all receptors and initiate a study of the structural and dynamic context of selective polypharmacology. In this work, we use molecular dynamics simulations to generate a conformational space of the receptors and subsequently characterize its binding properties applying molecular probe mapping. All-against-all comparison of the generated probe maps of the selected diverse conformations of all receptors with the Tanimoto similarity coefficient (Tc) enable to separate the receptors of group 1 from group 2. The pharmacophore built based on the Tc-selected receptor conformations, using the multiple probe maps discovers structural features that can be used to design molecules selective towards the receptors of group 1. The importance of several predicted residues to ligand selectivity is supported by the available mutagenesis and ligand structure-activity relationships studies. In addition, the Tc-selected conformations of the receptors for group 1 show good performance in isolation of known ligands from a random decoy. Our computational structure-based protocol to tackle selective polypharmacology of antipsychotic drugs could be applied for other diseases involving multiple drug targets, such as oncologic and infectious disorders.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Myocarditis, often initiated by viral infection, may progress to autoimmune inflammatory heart disease, dilated cardiomyopathy and heart failure. Although cardiac myosin is a dominant autoantigen in animal models of myocarditis and is released from the heart during viral myocarditis, the characterization, role and significance of anti-cardiac myosin autoantibodies is poorly defined. In our study, we define the human cardiac myosin epitopes in human myocarditis and cardiomyopathies and establish a mechanism to explain how anti-cardiac myosin autoantibodies may contribute to heart disease. We show that autoantibodies to cardiac myosin in sera from myocarditis and dilated cardiomyopathies in humans targeted primarily epitopes in the S2 hinge region of cardiac myosin. In addition, anti-cardiac myosin antibodies in sera or purified IgG from myocarditis and cardiomyopathy targeted the beta-adrenergic receptor and induced antibody-mediated cAMP-dependent protein kinase A (PKA) cell signaling activity in heart cells. Antibody-mediated PKA activity in sera was abrogated by absorption with anti-human IgG. Antibody-mediated cell signaling of PKA was blocked by antigen-specific inhibition by human cardiac myosin or the beta-adrenergic receptor but not the alpha adrenergic receptor or bovine serum albumin. Propranolol, a beta blocker and inhibitor of the beta-adrenergic receptor pathway also blocked the antibody-mediated signaling of the beta-adrenergic receptor and PKA. The data suggest that IgG antibody against human cardiac myosin reacts with the beta-adrenergic receptor and triggers PKA signaling in heart cells. In summary, we have identified a new class of crossreactive autoantibodies against human cardiac myosin and the beta-adrenergic receptor in the heart. In addition, we have defined disease specific peptide epitopes in the human cardiac myosin rod S2 region in human myocarditis and cardiomyopathy as well as a mechanistic role of autoantibody in the pathogenesis of disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cushing's syndrome (CS) is a disorder associated with significant morbidity and mortality due to prolonged exposure to high cortisol concentrations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The clonidine mydriasis model in rats has been widely applied in preclinical research to characterize a -adrenoceptor antagonistic properties of drugs. The present study was undertaken to pharmacologically determine if imidazoline I receptors are also involved in this model system. Sigmoid dose-response curves for pupillary dilation were produced in pentobarbital anesthetized rats by intravenous administration of increasing doses of agonists (guanabenz for a -adrenoceptors, clonidine for both a - adrenoceptors and imidazoline I receptors, and rilmenidine for imidazoline I receptors). Two antagonists (RS 79948 for a -adrenoceptors and efaroxan for imidazoline I receptors) were used to antagonize the mydriasis elicited by those three agonists, with antagonistic potencies calculated. In additional experiments, we examined the effect of the selective imidazoline I receptor antagonist, AGN 192403, on clonidine-induced mydriasis. The results showed that pupillary response curves elicited by guanabenz, clonidine and rilmenidine were competitively antagonized by both RS 79948 (0.03-1 mg/kg) and efaroxan (0.03-1 mg/kg) in a dose-related fashion. The potencies of either antagonist against the three agonists were not significantly different. AGN 192403 (5 mg/kg) did not significantly shift the clonidine mydriasis curve. These results suggest that imidazoline I receptors are not functionally involved in the rat clonidine mydriasis model and support this in vivo system as a useful model for studies of a -adrenoceptors. © 2004 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to identify receptors that mediate reflex mydriasis in pentobarbital-anesthetized rabbits, in which the cervical sympathetic nerve was sectioned unilaterally. Voltage-response curves of pupillary dilation were generated bilaterally by stimulation of the sciatic nerve. Evoked mydriatic responses were mediated mainly by efferent parasympathetic innervation, and, to a lesser extent, by sympathetic innervation. The a-adrenergic antagonist, phenoxybenzamine (0.3 mg/kg, intravenously (i.v.)), antagonized mydriasis of the neurally intact eye, but not that on the sympathectomized side. The a- adrenergic antagonist, RS 79948 (0.3 mg/kg, i.v.), potentiated mydriasis of the normal eye, but was without either a potentiating or inhibitory effect on the mydriasis of the sympathectomized eye. In addition, the dopamine-receptor antagonist, haloperidol (1 mg/kg, i.v.), inhibited evoked mydriasis of the sympathectomized eye. These results suggest that, unlike some other species (cats and rats), a-adrenoceptors do not mediate reflex mydriasis elicited by sciatic-nerve stimulation in the rabbit, and support the previous finding in humans that dopamine receptors may mediate this response.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Previously, we reported that the alpha(1A)-adrenoceptor, but not the alpha(1D)-adrenoceptor, mediates pupillary dilation elicited by sympathetic nerve stimulation in rats. This study was undertaken to further characterize the alpha-adrenoceptor subtypes mediating pupillary dilation in response to both neural and agonist activation. Pupillary dilator response curves were generated by intravenous injection of norepinephrine in pentobarbital-anesthetized rats. Involvement of alpha(1)-adrenoceptors was established as mydriatic responses were inhibited by systemic administration of nonselective alpha-adrenoceptor antagonists, phentolamine (0.3-3 mg/kg) and phenoxybenzamine (0.03-0.3 mg/kg), as well as by the selective alpha(1)-adrenoceptor antagonist, prazosin (0.3 mg/kg). The alpha(2)-adrenoceptor antagonist, rauwolscine (0.5 mg/kg), was without antagonistic effects. alpha(1A)-Adrenoceptor selective antagonists, 2-([2,6-dimethoxyphenoxyethyl]aminomethyl)-1,4-benzodioxane (WB-4101; 0.1-1 mg/kg) and 5-methylurapidil (0.1-1 mg/kg), the alpha(1B)-adrenoceptor selective antagonist, 4-amino-2-[4-[1-(benzyloxycarbonyl)-2(S)- [[(1,1-dimethylethyl)amino]carbonyl]-piperazinyl]-6,7-dimethoxyquinazoline (L-765314; 0.3-1 mg/kg), as well as the alpha(1D)-adrenoceptor selective antagonist, 8-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-8-azaspiro[4.5]decane-7,9-dione (BMY-7378; 1 mg/kg), were used to delineate the adrenoceptor subtypes involved. Mydriatic responses to norepinephrine were significantly antagonized by intravenous administration of both WB-4101 and 5-methylurapidil, but neither by L-765314 nor by BMY-7378. L-765314 (0.3-3 mg/kg, i.v.) was also ineffective in inhibiting the mydriasis evoked by cervical sympathetic nerve stimulation. These results suggest that alpha(1B)-adrenoceptors do not mediate sympathetic mydriasis in rats, and that the alpha(1A)-adrenoceptor is the exclusive subtype mediating mydriatic responses in this species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present experiments were undertaken to pharmacologically characterize a noninvasive, chronic, experimental dog model of nasal congestion with the overall goal of developing an effective tool for studying the mechanism of action of nasal decongestant drugs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Evidence suggests that in some species (cats, rabbits, and possibly humans) alpha-adrenoceptors in the iris dilator muscle are "atypical" in that they cannot be readily classified by conventional criteria. This study was undertaken in an attempt to characterize the alpha-adrenoceptor subtype(s) mediating sympathetically elicited mydriasis in rats. Frequency-response pupillary dilator curves were generated by stimulation of the preganglionic cervical sympathetic nerve (1-32 Hz) in pentobarbital-anesthetized rats. Evoked responses were inhibited by systemic administration of nonselective alpha-adrenergic antagonists, phentolamine (0.3-10 mg/kg) and phenoxybenzamine (0.03-1 mg/kg). The selective alpha(1)-adrenergic antagonist, prazosin (0.01-1 mg/kg), also was effective, although alpha(2)-adrenergic antagonism with rauwolscine (0.1-1 mg/kg) was not. alpha(1A)-Adrenoceptor-selective antagonists, 2-([2,6-dimethoxyphenoxyethyl]aminomethyl)-1,4-benzodioxane (WB-4101; 0.1-1 mg/kg) and 5-methylurapidil (0.1-1 mg/kg), as well as the alpha(1D)-adrenoceptor-selective antagonist 8-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-8-azaspiro[4.5]decane-7,9-dione (BMY-7378; 1-3 mg/kg), were used to determine the subtype(s) involved. Evoked mydriasis was significantly antagonized by both WB-4101 and 5-methylurapidil but not by BMY-7378. These results suggest that, unlike some other species, adrenoceptors in the rat iris dilator mediating neurogenic mydriasis are "typical" and, in addition, can be characterized as being primarily of the alpha(1A)-adrenoceptor subtype.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study was designed to determine if the histamine H3 receptor agonist R-alpha-methylhistamine would play a role in modulation of sympathetically evoked mydriasis in anesthetized rats, and if so, to ascertain the specific receptor subtype(s) involved. Reproducible frequency-response curves of pupillary dilation were generated by stimulation of the cervical preganglionic sympathetic nerve (1-32 Hz). Systemic administration of R-alpha-methylhistamine (0.3-3.0 mg kg(-1)) produced a dose-related inhibition of the evoked mydriasis. The greatest inhibition was seen at lower frequency levels, with about 43% depression observed at 2 Hz. The specific histamine H3 receptor antagonist, clobenpropit (3.0 mg kg(-1), i.v.), blocked the inhibitory effect of R-alpha-methylhistamine, whereas neither the histamine H2 receptor antagonist, cimetidine (5.0 mg kg(-1), i.v.), nor the histamine H1 receptor antagonist, chlorpheniramine (0.5 mg kg(-1), i.v.), was effective. The histamine H2 receptor agonist, dimaprit (10 mg kg(-1), i.v.), was also without effect on the evoked mydriasis. R-alpha-methylhistamine (3.0 mg kg(-1)) did not inhibit phenylephrine-induced mydriasis. These results support the conclusion that R-alpha-methylhistamine produces inhibition of sympathetically evoked mydriasis via histamine H3 receptor stimulation, presumably by an action on presynaptic histamine H3 receptors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Schizophrenia is clinically heterogeneous and multidimensional, but it is not known whether this is due to etiological heterogeneity. Previous studies have not consistently reported association between any specific polymorphisms and clinical features of schizophrenia, and have primarily used case-control designs. We tested for the presence of association between clinical features and polymorphisms in the genes for the serotonin 2A receptor (HT2A), dopamine receptor types 2 and 4, dopamine transporter (SLC6A3), and brain-derived neurotrophic factor (BDNF). Two hundred seventy pedigrees were ascertained on the basis of having two or more members with schizophrenia or poor outcome schizoaffective disorder. Diagnoses were made using a structured interview based on the SCID. All patients were rated on the major symptoms of schizophrenia scale (MSSS), integrating clinical and course features throughout the course of illness. Factor analysis revealed positive, negative, and affective symptom factors. The program QTDT was used to implement a family-based test of association for quantitative traits, controlling for age and sex. We found suggestive evidence of association between the His452Tyr polymorphism in HT2A and affective symptoms (P = 0.02), the 172-bp allele of BDNF and negative symptoms (P = 0.04), and the 480-bp allele in SLC6A3 (= DAT1) and negative symptoms (P = 0.04). As total of 19 alleles were tested, we cannot rule out false positives. However, given prior evidence of involvement of the proteins encoded by these genes in psychopathology, our results suggest that more attention should be focused on the impact of these alleles on clinical features of schizophrenia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The enzyme catechol-o-methyltransferase (COMT) transfers a methyl group from adenosylmethionine to catecholamines including the neurotransmitters dopamine, epinephrine and norepinephrine. This methylation results in the degradation of catecholamines. The involvement of the COMT gene in the metabolic pathway of these neurotransmitters has made it an attractive candidate gene for many psychiatric disorders. In this article, we reported our study of association of COMT with schizophrenia in Irish families with a high density of schizophrenia. Three single nucleotide polymorphisms (SNPs) were genotyped for the 274 such families and within-family transmission disequilibrium tests were performed. SNP rs4680, which is the functional Val/Met polymorphism, showed modest association with the disease by the TRANSMIT, FBAT and PDT programs, while the other two SNPs were negative. These SNPs showed lower level of LDs with each other in the Irish subjects than in Ashkenazi Jews. Haplotype analysis indicated that a haplotype, haplotype A-G-A for SNPs rs737865-rs4680-rs165599, was preferentially transmitted to the affected subjects. This was different from the reported G-G-G haplotype found in Ashkenazi Jews, but both haplotypes shared the Val allele. We concluded that COMT gene is associated with schizophrenia and carries a small but significant risk to the susceptibility in the Irish subjects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract
INTRODUCTION:
Transient receptor potential (TRP) channels comprise a group of nonselective calcium-permeable cationic channels, which are polymodal sensors of environmental stimuli such as thermal changes and chemicals. TRPM8 and TRPA1 are cold-sensing TRP channels activated by moderate cooling and noxious cold temperatures, respectively. Both receptors have been identified in trigeminal ganglion neurones, and their expression in nonneuronal cells is now the focus of much interest. The aim of this study was to investigate the molecular and functional expression of TRPA1 and TRPM8 in dental pulp fibroblasts.
METHODS:
Human dental pulp fibroblasts were derived from healthy molar teeth. Gene and protein expression was determined by polymerase chain reaction and Western blotting. Cellular localization was investigated by immunohistochemistry, and TRP functionality was determined by Ca(2+) microfluorimetry.
RESULTS:
Polymerase chain reaction and Western blotting showed gene and protein expression of both TRPA1 and TRPM8 in fibroblast cells in culture. Immunohistochemistry studies showed that TRPA1 and TRPM8 immunoreactivity co-localized with the human fibroblast surface protein. In Ca(2+) microfluorimetry studies designed to determine the functionality of TRPA1 and TRPM8 in pulp fibroblasts, we showed increased intracellular calcium ([Ca(2+)](i)) in response to the TRPM8 agonist menthol, the TRPA1 agonist cinnamaldehyde, and to cool and noxious cold stimuli, respectively. The responses to agonists and thermal stimuli were blocked in the presence of specific TRPA1 and TRPM8 antagonists.
CONCLUSIONS:
Human dental pulp fibroblasts express TRPA1 and TRPM8 at the molecular, protein, and functional levels, indicating a possible role for fibroblasts in mediating cold responses in human teeth.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The course of autosomal dominant polycystic kidney disease (ADPKD) is often associated with pain, hypertension, and kidney failure. Preclinical studies indicated that vasopressin V(2)-receptor antagonists inhibit cyst growth and slow the decline of kidney function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The defensive skin secretions of many amphibians are a rich source of bradykinins and bradykinin-related peptides (BRPs). Members of this peptide group are also common components of reptile and arthropod venoms due to their multiple biological functions that include induction of pain, effects on many smooth muscle types, and lowering systemic blood pressure. While most BRPs are bradykinin receptor agonists, some have curiously been found to be exquisite antagonists, such as the maximakinin gene-related peptide, kinestatin—a specific bradykinin B2-receptor antagonist from the skin of the giant fire-bellied toad, Bombina maxima. Here, we describe the identification, structural and functional characterization of a heptadecapeptide (DYTIRTRLHQGLSRKIV), named ranakinestatin-PPF, from the skin of the Chinese ranid frog, Pelophylax plancyi fukienensis, representing a prototype of a novel class of bradykinin B2-receptor specific antagonist. Using a preconstricted preparation of rat tail arterial smooth muscle, a single dose of 10−6 M of the peptide effectively inhibited the dose-dependent relaxation effect of bradykinin between 10−11 M and 10−5 M and subsequently, this effect was pharmacologically-characterized using specific bradykinin B1- (desArg-HOE140) and B2-receptor (HOE140) antagonists; the data from which demonstrated that the antagonism of the novel peptide was mediated through B2-receptors. Ranakinestatin—PPF—thus represents a prototype of an amphibian skin peptide family that functions as a bradykinin B2-receptor antagonist herein demonstrated using mammalian vascular smooth muscle.