104 resultados para Differentiable Algebras
Resumo:
We investigate the weak amenability of the Banach algebra ß(X) of all bounded linear operators on a Banach space X. Sufficient conditions are given for weak amenability of this and other Banach operator algebras with bounded one-sided approximate identities.
Resumo:
The purpose of the present paper is to lay the foundations for a systematic study of tensor products of operator systems. After giving an axiomatic definition of tensor products in this category, we examine in detail several particular examples of tensor products, including a minimal, maximal, maximal commuting, maximal injective and some asymmetric tensor products. We characterize these tensor products in terms of their universal properties and give descriptions of their positive cones. We also characterize the corresponding tensor products of operator spaces induced by a certain canonical inclusion of an operator space into an operator system. We examine notions of nuclearity for our tensor products which, on the category of C*-algebras, reduce to the classical notion. We exhibit an operator system S which is not completely order isomorphic to a C*-algebra yet has the property that for every C*-algebra A, the minimal and maximal tensor product of S and A are equal.
Resumo:
The aim of this paper is to show that there exist infinite dimensional Banach spaces of functions that, except for 0, satisfy properties that apparently should be destroyed by the linear combination of two of them. Three of these spaces are: a Banach space of differentiable functions on Rn failing the Denjoy-Clarkson property; a Banach space of non Riemann integrable bounded functions, but with antiderivative at each point of an interval; a Banach space of infinitely differentiable functions that vanish at infinity and are not the Fourier transform of any Lebesgue integrable function.
Resumo:
The main result of the note is a characterization of 1-amenability of Banach algebras of approximable operators for a class of Banach spaces with 1-unconditional bases in terms of a new basis property. It is also shown that amenability and symmetric amenability are equivalent concepts for Banach algebras of approximable operators, and that a type of Banach space that was long suspected to lack property A has in fact the property. Some further ideas on the problem of whether or not amenability (in this setting) implies property A are discussed.
Resumo:
We continue our study of tensor products in the operator system category. We define operator system quotients and exactness in this setting and refine the notion of nuclearity by studying operator systems that preserve various pairs of tensor products. One of our main goals is to relate these refinements of nuclearity to the Kirchberg conjecture. In particular, we prove that the Kirchberg conjecture is equivalent to the statement that every operator system that is (min,er)-nuclear is also (el,c)-nuclear. We show that operator system quotients are not always equal to the corresponding operator space quotients and then study exactness of various operator system tensor products for the operator system quotient. We prove that an operator system is exact for the min tensor product if and only if it is (min,el)-nuclear. We give many characterizations of operator systems that are (min,er)-nuclear, (el,c)-nuclear, (min,el)-nuclear and (el,max)-nuclear. These characterizations involve operator system analogues of various properties from the theory of C*-algebras and operator spaces, including the WEP and LLP.
Resumo:
This paper is a contribution to Mathematical fuzzy logic, in particular to the algebraic study of t-norm based fuzzy logics. In the general framework of propositional core and ?-core fuzzy logics we consider three properties of completeness with respect to any semantics of linearly ordered algebras. Useful algebraic characterizations of these completeness properties are obtained and their relations are studied. Moreover, we concentrate on five kinds of distinguished semantics for these logics-namely the class of algebras defined over the real unit interval, the rational unit interval, the hyperreals (all ultrapowers of the real unit interval), the strict hyperreals (only ultrapowers giving a proper extension of the real unit interval) and finite chains, respectively-and we survey the known completeness methods and results for prominent logics. We also obtain new interesting relations between the real, rational and (strict) hyperreal semantics, and good characterizations for the completeness with respect to the semantics of finite chains. Finally, all completeness properties and distinguished semantics are also considered for the first-order versions of the logics where a number of new results are proved. © 2009 Elsevier B.V. All rights reserved.
Resumo:
We describe the C*-algebras of " ax+b" -like groups in terms of algebras of operator fields defined over their dual spaces.
Resumo:
We use representations of operator systems as quotients to deduce various characterisations of the weak expectation property (WEP) for C∗ -algebras. By Kirchberg’s work on WEP, these results give new formulations of Connes’ embedding problem.
Resumo:
Motivated by the description of the C*-algebra of the affine automorphism group N6,28 of the Siegel upper half-plane of degree 2 as an algebra of operator fields defined over the unitary dual View the MathML source of the group, we introduce a family of C*-algebras, which we call almost C0(K), and we show that the C*-algebra of the group N6,28 belongs to this class.
Resumo:
We define several new types of quantum chromatic numbers of a graph and characterize them in terms of operator system tensor products. We establish inequalities between these chromatic numbers and other parameters of graphs studied in the literature and exhibit a link between them and non-signalling correlation boxes.
Resumo:
Strategies for mitigation of seafloor massive sulphide (SMS) extraction in the deep sea include establishment of suitable reference sites that allow for studies of natural environmental variability and that can serve as sources of larvae for re-colonisation of extracted hydrothermal fields. In this study, we characterize deep-sea vent communities in Manus Basin (Bismarck Sea, Papua New Guinea) and use macrofaunal data sets from a proposed reference site (South Su) and a proposed mine site (Solwara 1) to test the hypothesis that there was no difference in macrofaunal community structure between the sites. We used dispersion weighting to adjust taxa-abundance matrices to down-weight the contribution of contagious distributions of numerically abundant taxa. Faunal assemblages of 3 habitat types defined by biogenic taxa (2 provannid snails, Alviniconcha spp. and Ifremeria nautilei; and a sessile barnacle, Eochionelasmus ohtai) were distinct from one another and from the vent peripheral assemblage, but were not differentiable from mound-to-mound within a site or between sites. Mussel and tubeworm populations at South Su but not at Solwara 1 enhance the taxonomic and habitat diversity of the proposed reference site. © Inter-Research 2012.
Resumo:
We give a new proof that for a finite group G, the category of rational G-equivariant spectra is Quillen equivalent to the product of the model categories of chain complexes of modules over the rational group ring of the Weyl group of H in G, as H runs over the conjugacy classes of subgroups of G. Furthermore, the Quillen equivalences of our proof are all symmetric monoidal. Thus we can understand categories of algebras or modules over a ring spectrum in terms of the algebraic model.
Resumo:
We present criteria for unital elementary operators (of small length) on unital semisimple Banach algebras to be spectral isometries. The surjective ones among them turn out to be algebra automorphisms.
Resumo:
We investigate the automatic regularity of continuous algebra homomorphisms between Riesz algebras of regular operators on Banach lattices.